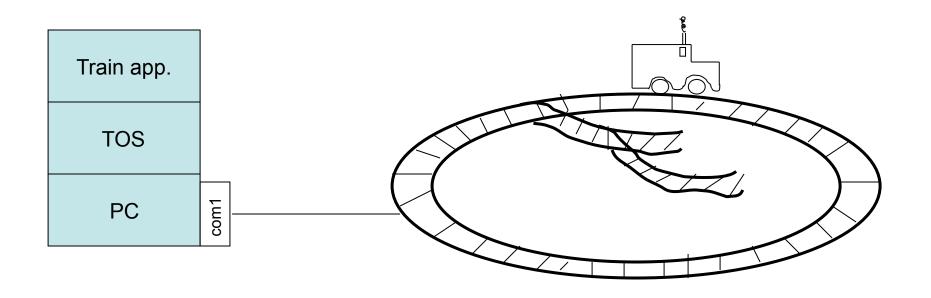
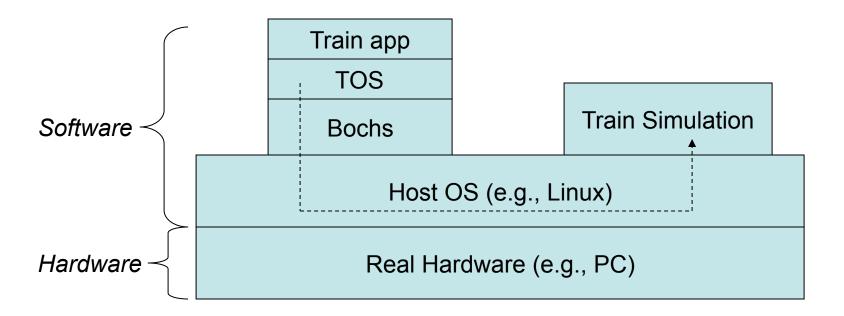
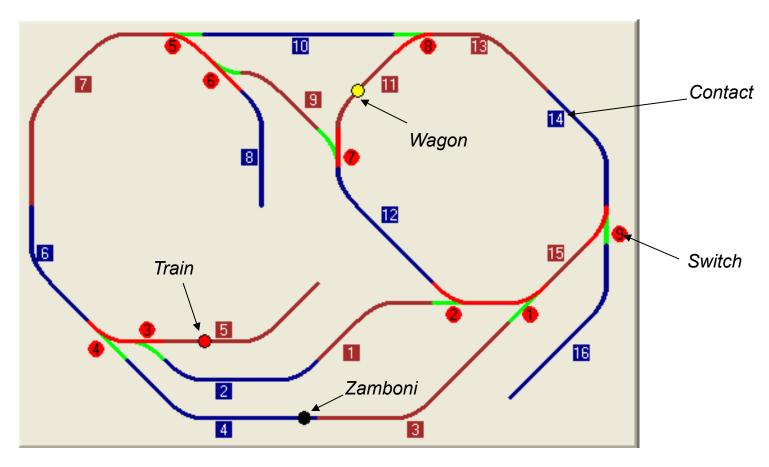

TOS Arno Puder



Objectives


- Introduce the train simulator
- Using the model train
- Hints for writing the train application

Train Setup



- Train application runs on top of TOS
- TOS implements various operating system functions including a serial line device driver
- Serial line (com1) of the PC is connected to the train
- Commands that control the train are sent via the serial line

Train Simulation

Labels and Switch Settings

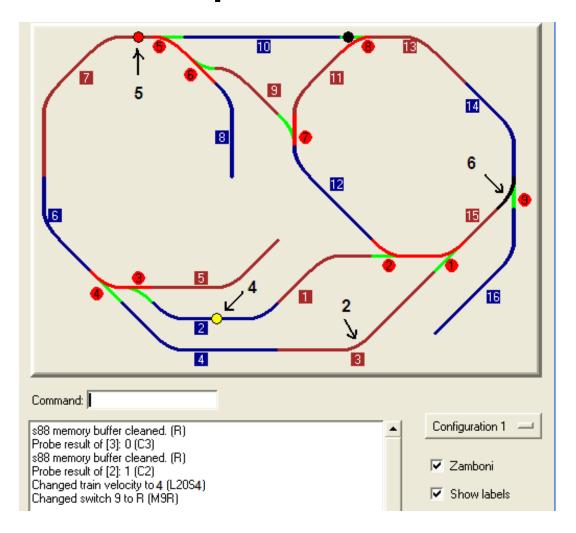
- Numbers in square are contact IDs
- Numbers in circle are switch IDs.
- Color green stands for 'G' setting of a switch.
 Color red stands for 'R' setting of a switch.

Train Commands (1)

Command	Function	Examples	Note
L#D{CR} #: vehicle ID	Change the direction of a vehicle. Train ID is 20.	To change the direction of the train: "L20D\015"	You cannot change the direction of any vehicle other than the train.
L#S#{CR} 1 st #: vehicle ID 2 nd #: speed, 0-5	Change the speed of a vehicle.	To change the speed of the train to 4: "L20S4\015" To stop the train: "L20S0\015"	 You cannot change the speed of any vehicle other than the train. On the real system, speeds 1-3 do not work well.

Notation:

- #: a number.
- {CR}: carriage return. (see Note 1.)


Train Commands (2)

Command	Function	Examples	Note
M#x{CR} #: switch ID X: 'R' or 'G'	Change a switch to 'G' or 'R'. 'G' and 'R' are the two possible settings of a switch.	To set switch 5 to "R": 'M5R\015'	The initial setting of a switch can be either 'G' or 'R'
R{CR}	Clear the s88 memory buffer. s88 is the device that controls the contacts.	"R\015"	This command is required for every "C" command.
C#{CR} #: contact ID	Get the status of a contact. "*1\015" is returned if there is a vehicle on the contact. Otherwise, "*0\015" is returned. (see Note 2)	To know if any vehicle is on contact 3: "C3\015"	 A contact is a track segment with a sensor. Must be preceded by a "R" command.

An Example

Commands sent:

- 1. "R\015"
 Clear memory buffer
- 2. "C3\015"
 Probe contact 3.
 Result is 0.
- 3. "R\015"
 Clear memory buffer
- 4. "C3\015"
 Probe contact 2.
 Result is 1.
- 5. "L20S4\015" Set train speed to 4
- 6. "M9R\015"
 Set switch 9 to red.

Note –About the Commands

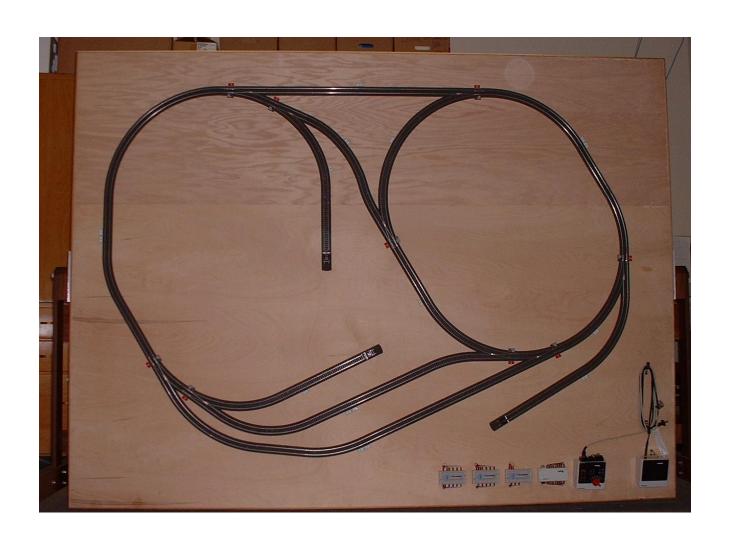
1. {CR} -- carriage return

- The ASCII of carriage return is 13. In C, you can use '\015'.
- In the simulator, if a command is from the keyboard, '\015' is not needed, i.e. you only type "L20S5" to set train speed. But if a command is sent from TOS, "\015" is needed, i.e. you must send "L20S5\015" (6 characters)

2. "C" command

The result is a string: "*0\015" or "*1\015", where the first character is '*' and the third character is a carriage return. The information you want is the second character: '0' for empty contact and '1' for occupied contact.

3. Pause between commands


A pause is required between commands. You can do so by sleeping, for example, 15 ticks. (Hint, define a variable for the number of ticks to sleep. You may have to change it when you try to run on the real system)

Train Application

Train Application

- There are four different configurations.
- For each configuration, Zamboni can be enabled or disabled.
- Therefore, there are 8 different permutations for the initial setup.
- Your train app has to find out at runtime, which configuration was selected (hint: use the "C"command to probe a track segment.
- The goal is to retrieve the abandoned wagon: the train has to rendezvous with the wagon and return to the home base while avoiding Zamboni

Model Train

Note – About the Real System

1.Reset the system

- 1. Press the "off", "stop", and "go" buttons at the same time.
- 2. Press "go".

2. Place the wagon

In order to get the wagon attached to the train, you must place it at specific positions.

Hints

1. Initialize the switches

 The first thing you should do in your application is to set the switches so that Zamboni, if exists, will not run out of track.

2. Timing issues

- The timing of the simulator is not exactly the same as the timing of the real system
- Trigger actions based on probing results, but not on absolute time.
- Leave as much "margin" as possible. For example, do not get too close to Zamboni; do not set a switch just before a vehicle reaches it.

3. Application design

When trying on the real system, you may need to modify your application somehow. So, design you application in a way in which modifications are easy to make. (Define and use functions, define a variable for sleep time, etc.)