
1

TOS Arno Puder

Objectives

•  Enhance TOS:
– Add malloc(), free()
– Overlapping windows

•  Window Manager
•  Keyboard support
•  TOS shell
•  Running TOS on real hardware

2

Accessing High Memory

•  So far, TOS only uses the first MB of RAM. We
need more memory for some advanced TOS
features.

•  Increasing emulated RAM to 8 MB
via .bochsrc:
memory: guest=8, host=2

•  Is this sufficient? No! Because of some arcane
architectural details of the early IBM PCs, more
work is needed to access RAM beyond the first
MB.

3

A20 Address Line
•  Early x86 CPUs had 20 address lines. Therefore maximum RAM

size was 1 MB (220 = 1 MB)
•  Some programs (e.g., MS-DOS) generated addresses higher than 1

MB and relied on a “wrap-around” (i.e., masking of the 20th address
bit).

•  The 80286 added more address line and the lack of masking of the
A20 line caused these programs to fail.

•  To allow backward compatibility of such legacy applications, an A20
gate was introduced on the motherboard. It could be enabled (do
not mask A20) or disabled (mask A20).

•  An operating system wishing to access high memory above 1 MB
need to enable the A20 gate.

4

Enabling A20 Gate

5

enablea20:
 call empty_8042
 mov al,0xd1 ; command write
 out 0x64,al
 call empty_8042
 mov al,0xdf ; A20 on
 out 0x60,al
 call empty_8042
 ret

empty_8042:
 in al,0x64
 test al,2
 jnz empty_8042
 ret

X86 subroutine in tos/tools/boot/utils.s

Dynamic Memory Management
•  Now that TOS can access high memory, next

step is to support dynamic memory
management via malloc() and free().

•  Note that those two functions are
implemented in C:
tos/kernel/malloc.c

•  malloc() keeps track of fragmentation via
its own data structure. When a caller
requests memory, malloc() will find a
sufficiently sized region of memory.

•  malloc() uses a kernel function sbrk() to
request more memory. If no more memory is
available, TOS will panic with assert(0)

•  free() simply returns a region of memory
back to the free-list managed by malloc().

6

}

640 KB
16 KB stack frame
for process 0

16 KB stack frame
for process 1

TOS code (tos.img)

0

1 MB

}

4000

8 MB

Managed by malloc()

https://danluu.com/malloc-tutorial/

7

Dynamic Memory
Management

•  void* malloc(size_t size)
Allocates a continuous region of memory of size size. The allocated memory is not
initialized in any way (e.g., zeroed out). Stops TOS with an assertion if it runs out of
available memory. Heap size is 7 MB.

•  void free(void* ptr)
Frees a previously allocated region of memory. The parameter ptr must have been
previously returned by malloc(). free() should be called only once for a given
pointer. Memory pointed to by ptr should not be accessed anymore after a call to
free().

Overlapping Windows

•  wprintf() has a severe limitation: it can not
handle overlapping windows.

•  This limits the amount of information visible on
the screen.

•  New requirements:
–  Handle overlapping windows.
–  Handle shifting of input focus.
–  Handle moving of windows.

•  Implementation available in
tos/kernel/wm.c.

8

•  Window with the current input focus is drawn with double border frame.
•  Use <tab> key to shift input focus between windows.
•  Use arrow keys to move the current window. 9

Challenges

10

•  Only one window has the input focus (i.e., where keystrokes will be sent)
•  Windows can be partially moved off the screen.
•  Changing Z-order of windows may expose previously hidden parts of a

window.
•  TOS process can write to a window even if that window is not in the

foreground.
•  All of this will be implemented in the so-called Window Manager.

Window Manager

•  The Window Manager is a TOS process
that deals with window output.

•  Requests to the WM are sent via TOS’ IPC.
•  Central data structure WM:

–  window_id: a unique window ID by which to identify a window.
–  x, y: top-left corner of the window (relative to the screen)
–  width, height: width and height of the window.
–  cursor_x, cursor_y: location of the cursor (relative to the top left

corner of the window)
–  cursor_char: character to be used for the cursor. If 0, no cursor

is drawn.
–  buffer: malloc’ed memory of size width * height that contains

the content of the window (only the characters; not the attributes)
–  next: pointer to the next window in reverse Z-order.

11

typedef struct __WM {
 int window_id;
 int x, y;
 int width, height;
 int cursor_x, cursor_y;
 char cursor_char;
 char* buffer;
 struct __WM* next;
} WM;

Example

12

1
window_tail buffer

next

2
buffer
next

3
buffer
next

4
buffer
next

•  window_tail points to the top-most window. This is the window that will have the input focus
and will be drawn with a double border.

•  The next-chain denotes the Z-order of the windows.
•  buffer:

–  Content of the window (character only; not attributes)

–  Malloc’ed size is width * height.
–  Stored on the heap (not the Video Display Area!)

Scrolling a Window

13

void scroll_wm(WM* window) {
 int to = 0;
 int from = window->width;
 int size = window->width * (window->height - 1);
 for (int i = 0; i < size; i++) {
 window->buffer[to++] = window->buffer[from++];
 }
 for (int i = 0; i < window->width; i++) {
 window->buffer[to++] = 0;
 }
}

1
buffer
next

Row 1 Row 2 Row 3

Redrawing the Screen

14

void redraw_screen() {
 WM* window = window_tail;
 clear_screen_buffer();
 if (window != NULL) {
 do {
 window = window->next;
 draw_window(window);
 } while(window != window_tail);
 }
 copy_screen_buffer();
}

void draw_window(WM* window) {
 BOOL is_top = window == window_tail;
 draw_window_frame(window, is_top);
 draw_window_content(window);
}

void draw_window_content(WM* window) {
 int i = 0;
 for (int y = 0; y < window->height; y++) {
 for (int x = 0; x < window->width; x++) {
 poke_screen_buffer(window->x + x, window->y + y, window->buffer[i++]);
 }
 }
 // …
}

void poke_screen_buffer(int x, int y, char ch) {
 if (x < 0 || y < 0) return;
 if (x >= 80 || y >= 25) return;
 screen_buffer[y * 80 + x] = ch;
}

15

Window Manager
•  void init_wm()

Initializes the Window Manager. Must be called once from kernel_main().
•  int wm_create(int x, int y, int width, int height)

Create a new window. x, y denote the top-left corner of the window. width and
height denote the size of the window. Note: it is not required that the window
physically fits the screen. Returns a window ID.

•  void wm_clear(int window_id)
Clears window and places cursor in the top-left corner of the window.

•  void wm_set_cursor(int window_id, int x, int y,
 char cursor_char)
Sets the cursor to a given location within the window. Also allows the cursor character
to be changed. If cursor_char == 0, no cursor is drawn.

•  void wm_print(int window_id, const char* fmt, ...)
Prints a formatted string to the window. Correctly handle carriage return (\n) and
scrolling.

16

Activating the Keyboard

•  In order to use the keyboard, the following
steps have to be done:
– Register the ISR for the keyboard interrupt.

This can be accomplished by calling
init_idt_entry (KEYB_IRQ, isr_keyb)
in init_interrupts()

– Make sure that isr_keyb() works with your
implementation of wait_for_interrupt()

– Call init_keyb() from the boot process after
calling init_wm().

17

Keyboard Process
•  void init_keyb()

Initializes the Keyboard Process. Needs to be called after the initialization of the
Window Manager via init_wm().

•  char keyb_get_keystroke(int window_id, BOOL block)
Will query the Keyboard Process for the next keystroke. window_id must be an
existing window that was previously created via wm_create(). Keystrokes will only
be returned when window_id has the input focus. If there is no pending keystroke
and block == TRUE, this function will block the caller until a keystroke is available.
When block == FALSE, the function will not block when there is no pending
keystroke. In that case the function will return 0.

18

WM/Keyboard Service

Keyboard
Notifier

Keyboard
Process

User Process

Window
Manager

5

1

6

7

2

3 4

WM/Keyboard Process
Interactions

1.  User process creates a new window via wm_create().
2.  Window Manager replies with a unique window ID. User process can use this

window ID to print content into the window via wm_print().
3.  User process can request keystrokes that are directed to a specific window via

keyb_get_keystroke(). This request references a window ID.
4.  If a keystroke is available for the given window ID, keyboard replies, otherwise user

process is kept reply blocked (deferred reply).
5.  Keyboard Notifier waits for keyboard interrupts via wait_for_interrupt(),

processes the keystroke and sends the resulting character to the Keyboard Process
via message().

6.  If the keystroke is the TAB key, the Keyboard Process will tell the Window Manager
to change the input focus next via wm_change_focus(). Likewise the arrow keys
will be intercepted by the Keyboard Process by calling wm_move_*() functions of
the Window Manager.

7.  Window Manager shifts the focus to the next window and replies with the window ID
that has the input focus.

19

20

Example

•  The TOS process above will print out whatever the user types on the
keyboard.

•  The TRUE parameter of keyb_get_keystroke() will tell the
Keyboard Process to block the caller (deferred reply) in case there is
no keystroke.

•  Note: keyboard process only returns one character at a time.

void user_process(PROCESS self, PARAM param)
{
 int window_id = wm_create(10, 3, 50, 17);
 wm_print(window_id, ”Hello World!\n");
 while (1) {
 char ch = keyb_get_keystroke(window_id, TRUE);
 wm_print(window_id, "Got key: %c\n", ch);
 }
}

21

TOS Shell

•  The purpose of the TOS shell is to allow a user to type
commands.

•  The TOS shell is implemented as a TOS process. This
process gets created in start_shell().

void shell_process(PROCESS self, PARAM param)
{
 int window_id = wm_create(10, 3, 50, 17);
 while (1) {
 - read command from keyboard
 - when user hits <enter> execute command
 }
}

22

Assignment “Shell”

•  Implement a TOS shell in
~/tos/kernel/shell.c

•  The shell should understand the commands
mentioned on iLearn.

•  Make sure you initialize the keyboard.
•  No test cases are available for this assignment.
•  Make sure you cover corner cases (illegal

commands, leading and trailing spaces, etc)
•  It should be possible to run several shells!

Multiple Process Instances
•  It is possible to create the same TOS process multiple times, i.e., call to

create_process() with the same entry point (function pointer).
•  However, special care must be taken in this case since all TOS processes

share the same address space.
•  A TOS process should NOT have any global variables; only local variables

(why?)
•  This might require to pass additional parameters to helper functions.
•  See tos/kernel/pong.c for an example.

23

// Bad
int pong_window_id;

void do_something() {
 wm_clear(pong_window_id);
 //…
}

void init_pong() {
 pong_window_id = wm_create(…);
 do_something();
}

// Good
void do_something(int window_id) {
 wm_clear(window_id);
 //…
}

void init_pong() {
 int pong_window_id = wm_create(…);
 do_something(pong_window_id);
}

