
1

TOS Arno Puder

2

Device Drivers
•  Code that manages the details of

interacting with a particular piece of
hardware

•  Interacting with hardware includes
handling I/O and interrupts

•  Linux kernel (2.6.x):
– 2.3 million lines of code in device drivers
– < 1 million lines of code for everything else!

3

Example: Network Drivers

Applications

Hardware

OS kernel

TCP/IP stack

Netlink Driver Intel Driver 3Com Driver

4

Example: Disk Controller
Drivers

Applications

Hardware

OS kernel

File System

HP Driver Logitech Driver Adaptec Driver

5

Handling I/O
•  There are three major ways to perform I/O:

– Memory mapped: a range of physical memory
addresses correspond to the device (e.g., the
video display)

– Programmed I/O: Special instructions to move
data to/from external devices

– Direct Memory Access (DMA): a device
transfers memory to/from regular memory
(note the difference with memory mapped I/O)

6

Handling I/O
•  DMA is very efficient but complex to set up

and manage
•  Many high-speed devices (e.g., network,

disk controller) use DMA for efficiency
•  Slower devices (e.g., keyboard, serial port)

often use memory-mapped or
programmed I/O for simplicity (and
historical compatability)

7

Programmed I/O
•  x86 implements programmed I/O via ports (not to be

confused with TOS’ IPC ports)
•  I/O ports have their own address space (0..216-1)
•  Two x86 instructions to access I/O ports:

–  in port, location: reads from I/O port port
–  out data, port: writes data to I/O port port

•  External hardware is connected to certain port addresses
•  TOS provides C functions that read and write bytes from

I/O ports. These functions are in
tos/kernel/inout.c

8

inportb()
/*
 * Reads a byte from the I/O port designated by port
 */
unsigned char inportb (unsigned short port)
{
 unsigned char _v;

 asm ("inb %w1,%0" : "=a" (_v) : "Nd" (port));
 return _v;
}

‘a’ : %EAX register

‘d’ : %EDX register

‘N’ : constant between 0 and 255

9

outportb()

/*
 * Writes the byte value to I/O port port
 */
void outportb (unsigned short port, unsigned char value)
{
 asm ("outb %b0,%w1" : : "a" (value), "Nd" (port));
}

10

Serial Port Device Driver

•  Our next goal: add a device driver for the serial
port to TOS

•  Like the timer service, we develop a new
process that interacts directly with the serial port
and communicates with other processes via IPC

•  The eventual goal is to write an application that
uses the serial port to control a model train

•  First: details about the serial port

11

Data Communication
•  Goal: physically transmit data between two systems
•  Data is as a sequence of bytes
•  Two ways to transmit a sequence of bytes:

–  Parallel: send one byte at a time
–  Serial: send one bit at a time

System A System B

1
0

1
1

0
1

1
0

0
1

1
0

1
0

0
0

1
0

1
0

0
1

1
0

1
0

1
1

0
0

1
0

0
1

1
0

1
1

0
1

0
0

1
1

1
0

0
1

Parallel

0

Serial

Data to be sent Data received
1 0 0 1 1

12

RS 232 Overview
•  RS 232 is a standard for transmitting data over a serial line
•  First introduced in 1960 by the Electronic Industries Association

(EIA)
•  Defines a serial line connection between a DCE and a DTE

–  DCE (Data Communications Equipment), e.g. modem, printer
–  DTE (Data Terminal Equipment), e.g. computer

•  RS 232 does not specify how data is transmitted between two DCEs
•  Maximum transfer rate is 115,200 BPS

DTE DCE DCE DTE RS 232 RS 232

13

RS 232 Continued
•  Standard covers details such as electronic

representation of signals:
–  TRUE: -3V to -15V; FALSE: 3V to 15V

•  Flow control:
–  Software: sending special flow control characters

XON and XOFF
–  Hardware: flow control via extra cables (RTS/CTS;

see next slides)
•  The RS 232 protocol is implemented by a chip

called a UART (Universal Asynchronous
Receiver/Transmitter)

14

Serial Pinouts for D9 and
D25 Connectors

Data and Control Signals

15

25 9 Ab Name Purpose DTE-DCE

2 3 TD Transmit Data Carries data from DTE to DCE !

3 2 RD Receive Data Carries data from DCE to DTE "

4 7 RTS Request To Send Asserted by DTE when it wants to send !

5 8 CTS Clear To Send DCE is ready to accept data from DTE "

6 6 DSR Data Set Ready Asserted by DCE to show its presence "

7 5 SG Signal Ground Common ground

8 1 DCD Data Carrier Detect DCE is successfully connected to a remote DCE "

20 4 DTR Data Terminal Ready Asserted by DTE to show its presence !

22 9 RI Ring Indicator DCE has detected an incoming phone call "

16

RS-232 Wiring

•  Notice that transmit/receive are on specific
pins

•  A DCE (e.g., a modem) thus receives data
on the transmit line and sends data on the
receive line

•  What if we want to directly connect two
DTEs (i.e., connect two computers via the
serial ports)?

17

Null Modem Wiring

•  Full-duplex connection between two DTEs. No flow
control necessary since both DTEs send at the same
speed.

D9 D25
3 2 TD

2 3 RD

5 7 SG

4 20 DTR

6 6 DSR

1 8 CD

7 4 RTS

8 5 CTS

D9 D25
2 3 RD

3 2 TD

5 7 SG

4 20 DTR

6 6 DSR

1 8 CD

7 4 RTS

8 5 CTS

DTE DTE

18

Loop Back Plug
D9 D25
3 2 TD

2 3 RD

5 7 SG

4 20 DTR

6 6 DSR

1 8 CD

7 4 RTS

8 5 CTS

The loop back plug has the receive and transmit lines connected
together, so that anything transmitted out of the serial port is
immediately received by the same port. Useful for debugging
purposes. TOS contains a simulation of a loop back plug in
tos/tools/serial/loopback.pyw

DTE

RS232 vs USB
•  RS232:

–  1:1 connection between one DTE and one DCE/DTE
–  Low transmission speed (max. 115,200 BPS)
–  Unbalanced signaling wrt to ground (-15V to +15V)
–  Data transfer is unidirectional on each line
–  Does not provide power

•  USB (Universal Serial Bus):
–  1:N connection between one computing device and N peripherals
–  Two power lines and 2 data lines. No physical control lines. Control and

configuration done exclusively in software
–  USB2: 480 Mbps, USB3: 5 Gbps
–  Balanced signaling (0V to +5V)
–  Data transfer is bidirectional. Ownership of the data lines is part of the

protocol
–  Provides power

19

20

Serial Port in Bochs
•  Bochs has various ways to handle the emulated

serial port -- for TOS we need to have data sent/
received on the serial port sent to a network
socket

•  This requires a recent version of Bochs -- if you
are using a version we provided, you are set.

•  Must be enabled with the following lines
in .bochsrc:
com1: enabled=1, mode=socket-client, dev=localhost:8888

com2: enabled=1, mode=socket-client, dev=localhost:8899

21

Serial Port Interface

•  X86 communicates with the UART via
programmed I/O

•  COM1 can be accessed via I/O ports
0x3F8 to 0x3FF
– 8 ports for various purposes (see next slide)

•  The base address 0x3F8 is defined as
COM1_PORT in tos/include/kernel.h

22

Initializing the UART
void init_uart()
{
 int divisor;

 divisor = 115200 / 1200;
 /* LineControl disabled to set baud rate */
 outportb (COM1_PORT + 3, 0x80);
 /* lower byte of baud rate */
 outportb (COM1_PORT, divisor & 255);
 /* upper byte of baud rate */
 outportb (COM1_PORT + 1, (divisor >> 8) & 255);
 /* LineControl 2 stop bits */
 outportb (COM1_PORT + 3, 2);
 /* Interrupt enable*/
 outportb (COM1_PORT + 1, 1);
 /* Modem control */
 outportb (COM1_PORT + 4, 0x0b);
 inportb (COM1_PORT);
}

23

Sending to the UART
•  Reading from port 0x3fd retrieves the Line

Status Register
•  Bit 5 in this register tells us if the UART send

buffer is full or empty
•  Before sending, we must first wait until the send

buffer is empty:
while (!(inportb(COM1_PORT+5) & (1<<5)));

•  To write a byte, it is simply sent to port 0x3f8:
outportb(COM1_PORT, byte_to_be_written);

24

Receiving from the UART
•  Whenever data is received, interrupt COM1_IRQ

(0x64) is raised
•  The interrupt signals the arrival of a byte ready

to be read from the I/O port:
byte_to_be_read = inportb(COM1_PORT);

•  If multiple bytes are received, an interrupt is
raised for each byte

25

TOS Serial Driver

•  Now, we know everything we need to write
a driver for the serial port in TOS!

•  Goal: processes send a message to the
“COM service” asking to read/write data

•  Problem: reader wants to block waiting for
interrupts, writer wants to poll the ready bit
for sending

•  As with the timer service, we fix this by
splitting the COM service into two
processes

26

TOS Serial Driver Architecture

1.  User process sends a request
to COM process

2.  COM process forwards
request to COM reader
process. The COM process
then starts writing all the
output data

3.  COM reader process reads
the number of requested
bytes and then sends a
message to COM process

4.  COM process replies to the
user process to signal end of
I/O

User Process

1.
 s

en
d

4.
 re

pl
y

2. message

3. message

COM Reader
Process COM Process

com_port

27

COM Service Message

•  Defined in tos/include/kernel.h
•  Members:

–  output_buffer: zero-terminated string to be output
–  input_buffer: buffer where input will be stored
–  len_input_buffer: number of bytes to be read

typedef struct _COM_Message
{
 char* output_buffer;
 char* input_buffer;
 int len_input_buffer;
} COM_Message;

28

COM1 I/O Example
void com1_example ()
{
 char buffer [12]; /* 12 == strlen ("Hello World!") */
 COM_Message msg;
 int i;

 msg.output_buffer = "Hello World!";
 msg.input_buffer = buffer;
 msg.len_input_buffer = 12;
 send (com_port, &msg);
 for (i = 0; i < 12; i++)
 kprintf (“%c”, buffer[i]);
}

Using the loopback device, this program will print “Hello World!”
Global variable com_port is initialized in init_com() and is
owned by the COM process.

29

COM Process
void com_process (PROCESS self, PARAM param)
{

 while (1) {
 - receive message from user process.
 - forward message to COM reader process
 - write all bytes contained in COM_Message.output_buffer

 to COM1
 - wait for message from COM reader process that signals that

 all bytes have been read
 - reply to user process to signal that all I/O has been completed
 }

}

30

COM Reader Process
void com_reader_process (PROCESS self, PARAM param)
{

 while (1) {
 - receive message from COM process.
 This message contains the number of bytes to read in

 COM_Message.len_input_buffer
 - read as many bytes requested from COM1 using

 wait_for_interrupt (COM1_IRQ) and
 inportb(COM1_PORT)
 - send message to COM process to signal that all bytes have
 been read
 }

}

31

Serial Line Interface
•  void init_com()

Initialize the serial line device driver.
– After initialization the global variable
com_port should point to the port that is
owned by the COM process.

– The COM process should accept messages of
type COM_Message (defined in kernel.h) as
explained on earlier slides.

– The priority of the COM process should be 6.
– The priority of the COM reader process

should be 7.

32

Assignment 9

•  Implement the function located in tos/
kernel/com.c: init_com()

•  Note that you will have to implement and register
an appropriate ISR (com1_isr()).

•  Note that you have to run the loopback plug
simulator located in tos/tools/serial/
loopback.pyw
before running Bochs

•  Test case:
–  test_com_1

33

test_com_1

