
1

TOS Arno Puder

2

Objectives

•  High-level interrupt API
•  Add a Null Process to TOS
•  Develop a timer service for TOS

3

High Level Interrupt API

•  We now know how to set up and write ISRs.
How does the ISR interact with running
processes?

•  Important: an ISR is NOT a process -- it runs in
the context of whatever process happened to be
running when the interrupt happened.

•  We need a way to synchronize a process with
the underlying interrupts: a function called
wait_for_interrupt()

4

wait_for_interrupt()
•  Goal is to let a process run without worrying about the

details of the underlying ISR.
•  As in receive(), the caller should block until the

interrupt occurs.
•  We introduce a new process state that a process has

while it is blocked: STATE_INTR_BLOCKED
•  Basic sequence of events:

–  Process calls wait_for_interrupt()
–  Process becomes STATE_INTR_BLOCKED
–  Interrupt occurs and the appropriate ISR puts the process back

to the ready queue.

5

Interrupt Handling

•  void wait_for_interrupt(int intr_no)
The process calling this function will become
STATE_INTR_BLOCKED, then when interrupt
intr_no occurs, the process is added back to
the ready queue.
–  A process can only wait for one interrupt at a time.
–  Only one process can wait for any given interrupt at

any given time
–  The only valid values for intr_no are TIMER_IRQ,
KEYB_IRQ, and COM1_IRQ.

6

Example
 void process_a (PROCESS self, PARAM param)
 {
 while (1) {
 wait_for_interrupt(TIMER_IRQ);
 kprintf(“*”);
 }
 }

•  TIMER_IRQ is defined in kernel.h
•  The endless loop will print ‘*’ to the screen, but with a

short delay after each output.
•  Thought experiment: what happens when TIMER_IRQ is

changed to KEYB_IRQ?

7

Timer Service
•  Our next goal: Implement a timer service

in TOS that mimics sleep() on a UNIX
system.

•  A poor solution: use a long for-loop to burn
CPU cycles. This is called busy waiting.

•  We want the sleeping process to be off the
ready queue while it is sleeping and added
to the run list when it is time to wake up.

8

Timer Service Design
•  We already have all the pieces needed!

–  Need to use both IPC and the timer interrupt.
•  Basic idea:

–  Create a new timer service process.
–  When a process wants to “sleep” for a while, it sends

a message to the timer process.
–  The timer process waits until the specified time has

passed, and then replies to the process which will
“wake it up.”

•  Note, there is no special
STATE_SLEEP_BLOCKED. The process is
STATE_REPLY_BLOCKED while it sleeps.

9

Timer Process
Only one sleeper at a time

void timer_process (PROCESS self, PARAM param)
{

 while(1) {
 msg = receive();
 ticks = parameter transmitted with message;
 while (ticks != 0)
 {
 wait_for_interrupt(TIMER_IRQ);
 ticks--;
 }
 reply to user process;
 }

}

What will happen if multiple clients want to use the timer process simultaneously?

Timer
Process

User Process

1. S
end 3.

 R
ep

ly

timer_port

10

Timer Service Design
•  Next step: allow multiple clients that can use the timer

process simultaneously.
•  Problem: The timer process should do a receive() to

wait for sleep requests from clients and it needs to call
wait_for_interrupt(TIMER_IRQ).

•  Big problem: A process can not be
STATE_RECEIVED_BLOCKED and
STATE_INTR_BLOCKED at the same time.

•  Solution: Introduce a helper process that is waiting for
the timer interrupt.

•  This helper process is called the timer notifier. Its
purpose is to notify the timer process whenever a timer
interrupt occurs. The notification happens via the
standard IPC mechanisms.

11

Re-Design of Timer Service

Timer
Notifier

Timer
Process

User Process

2. Timer Tick

1. S
end 3.

 R
ep

ly

1.  User process sends request specifying
how many ticks (i.e., number of timer
interrupts) it wants to sleep

2.  With each timer interrupt, the notifier
process sends a timer tick message to
the timer process

3.  When the specified number of ticks has
passed, the timer process replies to the
user process

timer_port

12

Timer Process Message

•  Defined in kernel.h
•  Instances of Timer_Message

are sent to the Timer Process
by the timer notifier and the
user processes

•  Member:
–  num_of_ticks: number of

ticks (i.e., number of timer
interrupts) that the process
wants to sleep

typedef struct _Timer_Message
{
 int num_of_ticks;
} Timer_Message;

13

Timer Notifier
void timer_notifier(PROCESS self, PARAM param)
{
 while(42) {
 wait_for_interrupt(TIMER_IRQ);
 send message to timer process;
 }

}

•  Timer Notifier process should have priority 7 (highest
priority)

•  Sending the message to the timer process should be
done via message()

•  The message does not need to carry any data

14

Timer Process
Multiple sleepers (1)

•  This slide gives some implementation hints for a Timer Process that
can handle multiple clients.

•  The Timer Process needs to maintain a list of clients and how many
ticks each client wants to sleep.

•  Upon arrival of a Timer Notifier message, the tick counter is
decremented for each client.

•  If a counter reaches 0, that particular client is woken up by replying
to it.

•  Note: it is perfectly possible that the order in which sleep requests
are received is not the same order in which the Timer Process will
reply to the clients. This is quite possible with the TOS-IPC and is
called out-of-order-replies.

15

Timer Process
Multiple sleepers (2)

void timer_process (PROCESS self, PARAM param)
{

 create the Timer Notifier;
 while(1) {
 msg = receive();
 if (msg was sent from a client) {
 register number of ticks client wants to sleep;
 continue;
 } else {
 // Message must have come from Timer Notifier
 for (all clients doing a sleep) {
 decrement tick counter;
 if (tick counter == 0)
 // Wake up client
 reply to the client;
 }
 }
 }
 }

}

16

Timer Process
Multiple sleepers (3)

•  Some implementation hints for the internal book-keeping of the Timer
Process:

 int ticks_remaining[MAX_PROCS];
 Remember that MAX_PROCS is the maximum number of
 allowable TOS processes.

 ticks_remaining[i] corresponds to pcb[i]
 ticks_remaining[i] == 0 means that process pcb[i]
 is currently not doing a sleep

 PROCESS client_proc;

 int i = client_proc – pcb; // pointer arithmetic!
 assert(client_proc == &pcb[i]);
 i can now be used as an index into ticks_remaining[]

17

Timer Process notes
•  The timer process gets created in
init_timer()

•  Timer Notifier must have priority 7 (why?)
•  Timer service should have priority 6 (why?)
•  How can the ticks_remaining[] array be made

more efficient? Hint: From O(n) to O(1) by using
a differential list.

18

sleep()

•  Create a function sleep() similar to the Unix
version that wraps the communication with the
timer process:
 void sleep(int ticks)

 {
 Timer_Message msg;
 msg.num_of_ticks = ticks;
 send(timer_port, &msg);
 }

•  Global variable timer_port should be
initialized in init_timer()

19

Timer Interface
• void init_timer()

Initialize the timer process:
– After initialization the global variable
timer_port is a communication port owned
by the timer process.

– The timer process should accept and process
messages of type Timer_Message (defined
in kernel.h) as explained on earlier slides.

• sleep(): wrapper function that clients
can use to send Timer_Message to the
timer process.

20

Null Process

•  TOS function dispatch() assumes that there
is at least one process on the ready queue.

•  It can happen, that all processes are blocked
because everyone is waiting for something

•  In that case we need to have a special process
that gets scheduled, called the Null Process

•  Some details:
–  It should be created with priority 0 (why?)
–  It must not do anything that may block (why?)

21

Assignment 8
•  Implement the following functions:

–  wait_for_interrupt() (in intr.c)
–  init_timer() (in timer.c)
–  init_null_process() (in null.c)

•  Modify existing functions:
–  init_interrupts()
–  isr_timer()
–  print_process()

•  Test cases:
–  test_isr_3
–  test_timer_1

22

PacMan
•  Earlier you were told to implement a function called create_new_ghost()

according to the following pseudo code:

•  For the delay you were told to do busy waiting via a long for-loop that does
nothing. Replace this delay with a call to sleep(). The animation of
multiple ghosts moving through the maze should now be smooth.

void create_new_ghost()
{
 GHOST ghost;
 init_ghost(&ghost);
 while (1) {
 remove ghost at old position (using remove_cursor())
 compute new position of ghost
 show ghost at new position (using show_cursor())
 do a delay
 }
}

