
1 

TOS      Arno Puder 



2 

Objectives 

•  Making TOS preemptive 
•  Avoiding race conditions 



3 

Status Quo 
•  TOS is non-preemptive.  i.e., a process has to relinquish 

control of the CPU voluntarily via resign() 
•  The implication is that if a process never calls resign(), no 

other process will get a chance to run (even if they are of 
higher priority) 

•  An ISR is not a process, the ISR runs in the context of a 
process 

•  An ISR is only an asynchronous procedure call where a bit of 
code can be executed in response to an interrupt  

Process 

ISR In
te

rr
up

t 

IR
E

T 



4 

Implementing Preemption 
•  Idea: write an ISR for the timer interrupt.  Inside the ISR 

we call dispatcher() to schedule some other process 
to run 

•  Idea sounds simple, but requires some deep thinking 
•  What we want to happen: 

–  Process 1 is running 
–  Timer interrupt calls the appropriate ISR 
–  Call to dispatcher() inside ISR schedules another process 
–  ISR exits to process 2 
–  Process 2 continues running 

•  What does this really mean?  A context switch happens 
in side the ISR! 

•  So: the ISR is doing something similar to resign() 



5 

Preemptive Multitasking 
•  What to do next: support for preemptive multitasking 
•  Even though a process is not executing resign(), other 

processes get a chance to run 
•  Every process should get a “time-slice”.   When that slice is 

used up, another process gets a chance to run 
•  Since the computer is very fast and the time slice is typically 

short, it gives the illusion of several processes seemingly 
running concurrently 

void proc_1 (PROCESS self, PARAM p) 
{ 
  MEM_ADDR screen_offset = 0xB8000; 
  while (42) 
    poke_b(screen_offset,            

    peek_b(screen_offset)+1); 
} 

void proc_2 (PROCESS self, PARAM p) 
{ 
  MEM_ADDR screen_offset = 0xB8002; 
  while (42) 
    poke_b(screen_offset,    

    peek_b(screen_offset)+1); 
} 



6 

Details of Preemption 

Problem: resign() and ISR save contexts 
differently! 

EIP (RET) 
EAX 
ECX 
EDX 

EBP 
EBX 

ESI 
EDI 

 Used stack 

ESP 

 Used stack 

EIP 
EAX 
ECX 
EDX 

EBP 
EBX 

ESI 
EDI 

CS 
EFLAGS Automatically 

pushed by 
CPU during 
interrupt 

Context as saved by resign() Context as saved by ISR 

ESP 



7 

Interrupt Preemption 
•  Problem: resign() and create_process() 

build up a different stack frame than an ISR 
–  resign() and create_process() save a 32 bit return 

address on the stack (intra-segment return address) 
–  ISR saves EFLAGS, CS and the return address on the stack 

(inter-segment return address) 

•  We can not change the way the x86 handles 
interrupts (i.e. that an interrupt results in an inter-
segment subroutine call) 

•  Only possible solution: change resign() and 
create_process() so that their stack frames 
are identical to that of an ISR! 



8 

Revisiting create_process() 
•  Changing the implementation of create_process() is easy 
•  When create_process() builds up the stack frame for the new process, 

simply include EFLAGS and CS at the right locations 
•  For EFLAGS, write the value 512 (0x200).  The one bit equal to 1 is IF == 1 

(enabled interrupts) 
•  For CS, write the value 8 (this is the code segment for TOS).  Remember to 

write this value as a long! 
•  Here is what the stack frame should look like: 

self 
0 

512 
8 

ptr_to_new_proc 
0 (EAX) 
0 (ECX) 
0 (EDX) 
0 (EBX) 
0 (EBP) 
0 (ESI) 
0 (EDI) 

param 



9 

•  Making sure that resign() builds up the same stack frame is a bit 
more complicated. 

•  Here is the situation right after we have entered resign() and the 
ISR (before pushing the context) 

 

•  How can we make the stack frame of resign() look like the one of 
the ISR?  Through some assembly magic (next slide) 

Revisiting resign() (1) 

EIP (RET) EFLAGS 
CS 
EIP 

ESP 

Used stack Used stack 

resign() ISR 

ESP 



10 

Revisiting resign() (2) 
•  Building up the correct stack frame in resign() can be 

achieved with the following assembly instructions (right at 
the beginning of resign): 

PUSHFL    ; Push EFLAGS 
CLI    ; Disable Interrupts 
POP  %EAX   ; EAX == EFLAGS 
XCHG  (%ESP), %EAX  ; Swap return address with EFLAGS 
     ; EAX now contains the return 

     ; address 
PUSH  %CS   ; Push long return address 
PUSH  %EAX 

•  Notes: 
–  The code above overwrites the original content of %EAX.  This is OK 
–  XCHG (%ESP), %EAX swaps the content of EAX and the top of the stack 
–  After executing the above code, the stack frame looks exactly as if an interrupt had 

occurred. 



11 

Revisiting resign() (3) 
•  Another thing that needs to be changed is the 

way we exit from resign() 
•  Recall that the C-compiler emits a RET 

instruction to exit a function 
•  This corresponds to an intra-segment jump 
•  But since we modify the stack to look like that of 

an ISR, we need to exit resign() by inter-
segment jump 

•  This can easily be accomplished by using the 
assembly instruction IRET 



12 

Doing a Context Switch in an ISR 

•  Once resign() and create_process() have been 
changed as described, doing a context switch inside of 
an ISR is simple: 

active_proc->esp = %ESP; 
active_proc = dispatcher(); 
%ESP = active_proc->esp; 

•  This is exactly what happens inside of resign()! 
•  So: an ISR behaves similar to resign(), except it is 

triggered by an interrupt, and not by a voluntary call to 
resign() 

•  That is the difference between preemption and non-
preemption 



13 

Atomicity 
•  Are we done yet in order to implement preemptive 

multitasking? 
•  NO! 
•  Problem: several processes use API such as 
add_ready_queue() “concurrently”.  There might be 
race conditions when two processes call this API 
concurrently. 

•  Race condition: because of concurrency, the execution 
of two processes may not always yield the correct result 
(“race” between two processes).  See example on next 
slide. 

•  Code that does not exhibit a race condition is said to be 
reentrant. 

•  This is similar to the “Too much milk” scenario 
discussed in an earlier class! 



14 

Race condition (1) 
•  The implementation of add_ready_queue() contains 

the following code: 
  PCB* ready_queue [MAX_READY_QUEUES]; 
  void add_ready_queue (PROCESS proc) 
  { 
      //…… 
      if (ready_queue[prio] == NULL) { 
    //There are no other processes with 
   //this priority 
   ready_queue[prio] = proc; 
      } 
      //…… 
  } 

•  Remember that because of preemption, a context switch 
can happen between any two (machine) instructions. 

•  In the following two slides, process 1 and process 2 both 
call add_ready_queue() at the same time.  The slides 
show the interleaving of instructions. 



15 

Race conditions (2) 

if(ready_queue[prio] == NULL){ 
 ready_queue[prio] = proc; 

} 

 
 
 
 

 

if(ready_queue[prio] == NULL){ 

 ready_queue[prio] = proc; 

} 

 

•  Process 1 first executes the if-statement and then process 2 

•  No race condition 

Process 1 Process 2 

Context 

switch Ti
m

e 



16 

Race conditions (3) 

•  Process 1 first executes the if-statement, but before it executes the assignment, a 
context switch happens and process 2 starts to run 

•  Because the assignment didn’t happen yet, process 2 will also enter the if-statement 
•  After the second context switch, process 1 executes the assignment, overwriting the 

assignment of process 2: Race Condition! 

if(ready_queue[prio] == NULL){ 
 

 

 

 

 

 

 

 ready_queue[prio] = proc; 

} 

 
 
 

if(ready_queue[prio] == NULL){ 

 ready_queue[prio] = proc; 

} 

 

Process 1 Process 2 

Context 

switch 

Ti
m

e 

Context 

switch 



17 

Reentrant code 
•  How can we make our code reentrant, i.e. avoid race conditions 
•  We have to make sure that no context switch happens while in functions that are not 

reentrant. 
•  This can be achieved by disabling interrupts while in these functions: 

 void add_ready_queue (PROCESS proc) 
 { 
  volatile int saved_if; 
  DISABLE_INTR (saved_if); 
  //… 
  ENABLE_INTR (saved_if); 
 } 

•  DISABLE_INTR() and ENABLE_INTR() are crude versions of acquire lock and 
release lock in the “too much milk example”. We avoid race conditions simply by 
turning off interrupts and thereby making sure no context switch can happen inside 
the timer ISR. 

•  Remember that ENABLE_INTR() needs to be called whenever you exit a function. 
E.g., if you exit a function via return: 

 if (…) { 
  // … 
  ENABLE_INTR (saved_if); 
  return; 
 } 

•  Instrument all functions that may have race conditions: remove_ready_queue, 
create_process(), output_string(), send(), and many more! 



18 

Disabling/Enabling Interrupts 
•  DISABLE_INTR() and ENABLE_INTR() are macros defined in ~/

tos/include/kernel.h 
•  Both these marcos require a parameter of type volatile int: 

  volatile int saved_if; 
  DISABLE_INTR (saved_if); 
  //… 
  ENABLE_INTR (saved_if); 

•  DISABLE_INTR() saves the current value of the IF bit in 
saved_if, and then executes CLI 

•  ENABLE_INTR() restores the IF bit to what was saved in 
saved_if. This guarantees that interrupts will only turned on, if 
there were turned on before calling DISABLE_INTR() 

•  This is important for nested function calls. Before exiting, the nested 
function should restore interrupts to either enabled or disabled 
depending on whether interrupts were enabled or disabled when  
the nested function was called. 



19 

Interrupts and old test cases 
•  After implementing support for interrupts, some of the old 

test cases will not work anymore (e.g., 
test_dispatcher_*() and test_ipc_*()) 

•  Why? 
–  Those older test cases do not call init_interrupts() 
–  create_process() now pokes the value of 512 for 

EFLAGS. Reminder: 512 == IF bit is true (Interrupts enabled) 
–  The moment a context switch happens, the last instruction in 
resign() is now IRET. 

–  Because IRET pops off EFLAGS and create_process() 
poked 512 and init_interrupts() was not called, 
disaster strikes. 

–  This means: IRET implicitly turns on interrupts, but interrupts 
were not initialized. 



20 

Solution 
•  Make use of global variable interrupts_initialized 

(defined in ~/tos/kernel/intr.c) 
•  In init_interrupts() set interrupts_initialized to true 
•  In create_process(): 

–  If interrupts_initialized == true: poke 512 for EFLAGS 
–  If interrupts_initialized == false: poke 0 for EFLAGS 

•  Poking 0 guarantees that interrupts will remain turned off 
during a context switch. 

•  This guarantees that interrupts will remain disabled for 
older test cases that do not call init_interrupts(). 



21 

Assignment 7 
•  Implement the function located in ~/tos/kernel/
intr.c: isr_timer() 

•  Modify the function located in ~/tos/kernel/
intr.c: init_interrupts() 

•  Modify the function located in ~/tos/kernel/
process.c: create_process() 

•  Modify the function located in ~/tos/kernel/
dispatch.c: resign() 

•  Test case: 
–  test_isr_2 



22 

PacMan 
•  Earlier you were told to implement a function called create_new_ghost() 

according to the following pseudo code: 
 
 
 
 
 
 
 
 
 
 

•  You were asked to add the call to resign() in order to force a context 
switch that would allow other ghosts to move. This is the essence of 
collaborative multitasking. 

•  Once you finish assignment 7, you can remove this call to resign(). Since 
TOS is now implementing pre-emptive multitasking, all ghosts should still 
move ‘concurrently’. 

void create_new_ghost() 
{ 
    GHOST ghost; 
    init_ghost(&ghost); 
    while (1) { 
       remove ghost at old position (using remove_cursor()) 
       compute new position of ghost 
       show ghost at new position (using show_cursor()) 
       do a delay 
       resign() 
  } 
} 


