
1

TOS Arno Puder

2

Objectives

• Introduce the x86 interrupt handling model
• Explain the functionality of the Interrupt

Controller
• Explain how TOS handles interrupts

3

Review: Segmentation

• All x86 memory references go through
address translation.

• Used primarily for virtual memory
– Details on VM later this semester

• Segmentation is always used, we can’t
avoid it!

4

x86 Segmentation

• A virtual address is defined by
selector:offset and is converted to a linear
address

• Each selector value points to a segment
and the offset value points to the offset
within that segment
– Selector: 16 bits
– Offset: 32 bits

5

Segmentation in TOS
• Segments in TOS are defined so that a

physical address is identical to the virtual
address.

• The segment table is constructed and
loaded during the boot process; i.e.,
before calling kernel_main()

• %CS is loaded with 0x8 (GDT entry 1)
and %DS and %SS are loaded with 0x10
(GDT entry 2)

6

Inter-Segment Subroutines
• So far, when doing a CALL instruction, we

only specified the 32-bit offset, but not the
segment sector
– This is called an Intra-Segment Jump

because the jump happens within the same
segment

• An Inter-Segment Jump jumps to a
different segment

• For an inter-segment procedure call, not
only the return address (i.e., the offset) is
pushed on the stack, but also %CS

7

Reacting to External Events

• An OS frequently needs to react to
external events:

– User has pressed a key on the keyboard
– User has moved the mouse
– Network has received a new packet
– Data has been read from the hard disk

• There are two possible ways to do this:
– Polling
– Interrupts

8

Polling
• The OS periodically probes (or polls) the hardware
• This polling has to occur in order not to miss any events:

Some_app_code();
Probe_hardware();
Some_more_app_code();
Probe_hardware();
Some_more_app_code();
Probe_hardware();

• Advantages:
– Easy to understand
– Easy to implement
– No special support from the CPU needed

• Disadvantage:
– Very, very messy code (because the hardware needs to be probed very

frequently)

9

Interrupts
• Interrupts are a special mechanism to react efficiently to

external events.
• An interrupt essentially leads to an asynchronous

subroutine call.
• When an interrupt occurs, the CPU “interrupts” the

currently running program and calls a subroutine.
• This subroutine is called an Interrupt Service Routine

(ISR) because it handles the interrupt.
• Note: the ISR is not a process!
• After the ISR has finished, it returns to the location from

which it was called.
• The currently running process does not notice that it was

interrupted!

10

Calling the ISR

• Interrupt interrupts the currently running process
• For that reason, the ISR has to make sure it does not

change the state of the CPU
• The ISR therefore has to save the context of the process

that gets interrupted
• IRET is a special assembly instruction that exits an ISR

(more on this later)

Process

ISR In
te

rru
pt

In
te

rru
pt

IR
ET

IR
ET

11

Types of Interrupts
• There are two different types of interrupts

– Normal interrupts: interrupts that are generated by external
hardware. Normal interrupts can be masked (i.e., turned-off)

– Non-maskable interrupts (NMI): NMI are generated for certain
internal errors (e.g. division-by-zero). These interrupts can not
be masked (i.e., turned-off)

• We will not write ISRs for NMIs in TOS because
if everything is working, those should never
happen.

• The only thing we will need to worry about are
normal interrupts.

12

Normal Interrupts
• Normal interrupts can be masked, i.e., they can be turned off
• When normal interrupts are turned off, they still happen, but

they are simply ignored by the CPU
• Whether interrupts are masked or not is determined by the IF

(Interrupt Flag) of the EFLAGS register
– IF == 0: interrupts are masked
– IF == 1: interrupts are not masked

• IF can be set to 0 with the assembly instruction cli (clear
interrupts)

• IF can be set to 1 with the assembly instruction sti (set
interrupts)

• When TOS is booted, interrupts are masked (i.e., the boot
loader executes a cli)

• Before doing a sti, ISRs have to be initialized properly

13

Raising an Interrupt
• Here is the sequence of events:

– External hardware sends signal to the interrupt controller
– Interrupt controller raises the appropriate interrupt with the x86
– After the x86 has finished the current instruction, the following

things happen:
» EFLAGS are pushed onto the stack
» %CS is pushed onto the stack (as a 32-bit value)
» %EIP is pushed onto the stack
» CLI (disable interrupts)
» Do an inter-segment jump to the entry point of the ISR

(defined in the IDT, see later slide)

• Once the ISR is entered, the ISR has to save all
x86 registers onto the stack in order to save the
context of the program it was interrupting

14

• What does an interrupt look on the hardware side?

• A special interrupt controller receives a signal from an
external hardware (e.g. floppy)

• The Interrupt Controller then raises an interrupt with the x86
• If IF == 1 in the EFLAGS register an appropriate ISR is

executed.
• The x86 supports 256 different interrupts
• The 8259A maps signals from external hardware to one of

those 256 interrupts

Hardware

X86
CPU

Interrupt
Controller
(8259A)

Timer

Keyboard

Floppy

15

Interrupt Controller
• Every PC has an Interrupt Controller (8259A)
• Its purpose is to mediate between external hardware and the x86

CPU
• When the PC is turned on, the 8259A maps external hardware to

certain interrupts. E.g., the timer is mapped to interrupt 8
• BIG PROBLEM: with newer x86 CPUs, the first 16 interrupts (0-15)

are NMIs which have a specific meaning (e.g. interrupt 8 is a Double
Fault)

• How can the x86 then distinguish between a double fault and a timer
interrupt? Answer: It can’t!!

• Solution: we have to re-program the 8259A to map interrupts for
external hardware to other interrupt numbers

• Function re_program_interrupt_controller() in
~/tos/kernel/intr.c is doing this

• This function is given to you (see next slide), but you have to call it
from init_interrupts()

16

void re_program_interrupt_controller()
{

// Send initialization sequence to 8259A-1
asm ("movb $0x11,%al;outb %al,$0x20;call delay");
// Send initialization sequence to 8259A-2
asm ("movb $0x11,%al;outb %al,$0xA0;call delay");
// IRQ base for 8259A-1 is 0x60
asm ("movb $0x60,%al;outb %al,$0x21;call delay");
// IRQ base for 8259A-2 is 0x68
asm ("movb $0x68,%al;outb %al,$0xA1;call delay");
// 8259A-1 is the master
asm ("movb $0x04,%al;outb %al,$0x21;call delay");
// 8259A-2 is the slave
asm ("movb $0x02,%al;outb %al,$0xA1;call delay");
// 8086 mode for 8259A-1
asm ("movb $0x01,%al;outb %al,$0x21;call delay");
// 8086 mode for 8259A-2
asm ("movb $0x01,%al;outb %al,$0xA1;call delay");
// Don't mask IRQ for 8259A-1
asm ("movb $0x00,%al;outb %al,$0x21;call delay");
// Don't mask IRQ for 8259A-2
asm ("movb $0x00,%al;outb %al,$0xA1;call delay");

}

17

Interrupt Controller
• In TOS we will only make use of three interrupts

– Timer: used for all timing related issues
– COM1: used for communicating with the train
– Keyboard: used whenever the user types a key on the keyboard

• After re_program_interrupt_controller()
is called, the timer is mapped to interrupt 0x60,
COM1 is mapped to interrupt 0x64 and the
keyboard is mapped to interrupt 0x61

• There are three defines for this in
~/tos/include/kernel.h:

#define TIMER_IRQ 0x60
#define COM1_IRQ 0x64
#define KEYB_IRQ 0x61

18

Software
• What does an interrupt look like in software?
• First of all, interrupts are only handled between two

assembly instructions. I.e. interrupt handling is deferred
until the current instruction has finished executing

• As long as interrupts are enabled (IF == 1), the currently
running program can be interrupted at any time

• An interrupt basically causes an inter-segment
subroutine call to the ISR

• Since every interrupt can be handled by its own ISR, the
x86 needs to know the entry point of the ISR

• This is done via the Interrupt Descriptor Table (IDT)

19

Interrupt Descriptor Table

For every one of the 256 interrupts, the IDT
defines Selector, Attributes and Offset

Selector Attributes Offset

IDT

Base Limit Attributes

GDT or LDT

Entry Point
of ISR

Liner Address Space

20

Details of one IDT entry

• In TOS, the attributes are initialized as follows:
– P = 1
– DPL = 0
– DT = 0
– Type = 0xE (x86 Interrupt Gate)
– Dword Count = 0
– Selector = 8 (this is the segment selector for the code segment in TOS)

Offset
31…16 Attributes Selector Offset

15…0

P DPL D
T Type 0 0 0 Dword

Count

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
m + 5 m + 4

m + 7 m + 6 m + 5 m + 4 m + 3 m + 2 m + 1 m

21

C Definition for IDT Entry
• Defined in

~/tos/include/kernel.h

• Makes use of bitfields
in C

• sizeof (IDT) == 8
• TOS needs to declare

an array with 256
elements of struct IDT

typedef struct
{

unsigned short offset_0_15;
unsigned short selector;
unsigned short dword_count : 5;
unsigned short unused : 3;
unsigned short type : 4;
unsigned short dt : 1;
unsigned short dpl : 2;
unsigned short p : 1;
unsigned short offset_16_31;

} IDT;

Note: bitfields are aligned based on the endianness of the underlying architecture
http://mjfrazer.org/mjfrazer/bitfields/

http://mjfrazer.org/mjfrazer/bitfields/

22

Building the IDT
• Just like the GDT, the IDT is defined in main memory
• The IDT is an array with 256 elements of struct IDT
• The x86 needs to know where the IDT is stored in

memory
• Just like with the GDT, there is a special x86 register that

tells the CPU where the IDT is located
• TOS provides the function load_idt() that is doing

this
• This function makes use of the lidt instruction
• This function needs to be called from
init_interrupts()

23

Notes on the ISR
• The ISR is a regular C-function that should not have

input or return parameters
• The ISR can not have local variables
• All registers have to be pushed onto the stack as the

very first thing
• Before popping the registers off the stack, the ISR needs

to reset the interrupt controller via:
movb $0x20,%al
outb %al,$0x20

• The ISR needs to be exited via the assembly instruction
IRET (interrupt return)

• IRET pops off %EIP, %CS and the EFLAGS (this will
return to the location where the interrupt interrupted the
currently running program)

24

Template of for an ISR
void isr ()
{

asm ("push %eax; push %ecx; push %edx");
asm ("push %ebx; push %ebp; push %esi; push %edi");

/* react to the interrupt */

asm ("movb $0x20,%al");
asm ("outb %al,$0x20");
asm ("pop %edi; pop %esi; pop %ebp; pop %ebx");
asm ("pop %edx; pop %ecx; pop %eax");
asm ("iret");

}

25

Initializing the IDT
• All 256 entries of the IDT need to be initialized in
init_interrupts()

• This initialization happens via init_idt_entry()
that initializes one IDT entry

• By default, all 256 IDT entries point to some default
ISR:

– For interrupts 0 to 15 (i.e., NMIs) it points to an ISR that prints an
error message and then enters an endless loop (i.e., this ISR never
returns and thereby stopping the system)

– For interrupts 16 to 255 it points to an ISR that does nothing
(basically it does only what was shown earlier for a template of
ISR)

• Later we will augment the initialization process once
we have written the ISR, for the timer and COM1

26

Interrupt handling in TOS
• void init_idt_entry (int intr_no, void (*isr) (void))

Initialize the IDT entry for interrupt number intr_no. The only other
argument is a function pointer to the ISR.

• void init_interrupts()
Initialize the interrupt subsystem of TOS the way explained on an
earlier slide. When the initialization is completed, it sets the global
variable interrupts_initialized to true. As the last
instruction, init_interrupts() enables the interrupts by
executing the assembly instruction sti.

27

Assignment 6
• Implement the functions located in kernel/intr.c:

– init_idt_entry()
– init_interrupts()

– (interrupt handlers as described before)

• Test case:
– test_isr_1

• Note: For the test case it is beneficial to see the behavior
of the reference implementation by typing:
– make run_ref

	Slide Number 1
	Objectives
	Review: Segmentation
	x86 Segmentation
	Segmentation in TOS
	Inter-Segment Subroutines
	Reacting to External Events
	Polling
	Interrupts
	Calling the ISR
	Types of Interrupts
	Normal Interrupts
	Raising an Interrupt
	Hardware
	Interrupt Controller
	Slide Number 16
	Interrupt Controller
	Software
	Interrupt Descriptor Table
	Details of one IDT entry
	C Definition for IDT Entry
	Building the IDT
	Notes on the ISR
	Template of for an ISR
	Initializing the IDT
	Interrupt handling in TOS
	Assignment 6

