rrrrrrrrr

Seamentation

Objective

* Explain the x86 segmentation model

* Explain how a virtual address is translated
by the x86 to a physical address

« Explain the various x86 datastructures and
hardware registers

Loading of Programs (1)

Every program is linked by the linker to be a self-
contained executable.

Programs are linked as if they were loaded to address 0.
|.e., all references (jJumps, calls, memory loads) are done
relative to address 0.

When a program is loaded into memory, it will be
assigned an available region of memory.

All references need to be adjusted to the base address
of this memory region (see next slide).

Beware: some references (such as 0xB8000) should not
be adjusted!

Note: adjusting references does not guard against one
process corrupting another process’ memory!

Loading of Programs (2)

20

call 10

10

jump 20

Program 2

18

10

movl 18,%eax

jump 10

Program 1

60
a0 [0 cal(30
30 | 30
20 | 20 |jumg 40
18 [18 | ...
10 | 10 | movl 18,%eax
0 0O |jump 10

Main Memory

Address Translation

“Patching” a program as shown on the previous slide is a
complicated matter and also does not protect processes amongst
each other.

A better way would be to have hardware support that does not
require this patching.

This is the goal of address translation: instead of patching a program
manually, (virtual) addresses are translated ‘on the fly’ .

Physical memory in a computer is a linear array of bytes called
physical address space.

Physical memory is not directly accessed by programs. They use
virtual memory which maps to physical memory.

Chief benefit of virtual memory is protection as each program
(process) gets its own address space. A program can not access
address space of another program.

Segmentation and Paging - |

Segmentation and paging are two address translation
techniques supported by the x86.

Segmentation is a “two dimensional” virtual address
space defined by selector:offset.

Each selector value points to a segment and the offset
value points to the offset within that segment

— Selector: 16 bits

— Offset: 32 bits

Segmentation maps virtual addresses to linear
addresses.

All x86 programs have to go through segmentation.

Segmentation and Paging - I

Linear address space is 32 bit address space for
each task

Allows up to a maximum of 4 GB (== 232 bytes)

Paging maps linear address space to physical
address space

Paging can be enabled or disabled (we will not
use paging!)

If paging Is disabled, then the linear address
corresponds to the physical address

Both segmentation and paging use translation
tables

Segmentation and Paging - ll|

(Paging disabled)

()
Virtual address s .(_% Linear address é Physical address
S = . S © .
0..15 [0ceveennn. 31— 8¢ 0. 31 g 0 31
G 2 s
Selector : Offset €& s
P S £
= &
o
_ N\ /
YT YT

Segmentation Paging

Segmentation - Mapping

Virtual Address Space } Linear Address Space

Variable size units of memory

called segments form the basis i
of the virtual-to-linear address "™ -t B+Limit(A)
translation SegmentA| |
Segments are defined by: ° i pasel®)
— base address » |
o Limit(B) - |
— address limit ﬁ:.\ B+Limit(E)
— segment attributes Segment B i
Addresses within one segment N
. 0 N Base(B)
are relative to the base e B+LImit(C)
address of that segment. Limit(C) A o
g Base
|dea: load each program into Segment C|
its own segment! 0 |

Segmentation - Example

 Segment 1 is defined as follows:
— Base address: 0x50000

— Limit: Oxffff
Virtual address Linear address
1:0 0x50000
1:0x67 0x50067
1:0x10000 lllegal. Beyond

limit of segment

10

Segment Descriptors

The x86 contains six segment registers:. %CS, %DS,
WBES, %FS, %GS, and %SS

A segment register contains a 16 bit segment selector

Segment selector is an index to the segment descriptor
stored in a descriptor table

Each segment descriptor contains important information
about the segment: base, limit, attributes

The 4 bit type attribute specifies if the segment is read
only/read write/execute or other specific combinations
thereof

11

Segment Descriptor Tables

Segment descriptor tables hold the segment descriptors

There are two types local (LDT) and global (GDT). The
virtual address space is distributed between these two
tables

GDT remains the same for all processes, while the LDT
IS private to each process

GDT can be used to store information about OS code
and data segments accessible to all programs. LDT can
be used to store code and data segments for that
program

GDT also stores other types of descriptors (not relevant
to the topic here)

In TOS we only use the GDT

12

Anatomy of a Segment Selector

Segment Selector

and Descriptor

GDT or LDT
Descriptor Index (13 bits) -:- RPL \
‘ Used by protection
mechanism
GDT or LDT
, (2 bits)
(1 bit)
______________________________________ Segment Descriptor
S?:;Znt (Other Type Segment Base Segment Limit
SN 0...3) (23, 0) (5. 0)

(31...24)

Notes

Size of one Segment Descriptor is 8 bytes

Note that the 32 bits of the segment base are not stored
consecutively in the Segment Descriptor

RPL (Requested Privilege Level). Should always be set
to0in TOS

Tl (Table Index). Should always be set to 0 in TOS

The only two segment types we will use in TOS are:
— Data: 0x2
— Code: Oxa

GDT and LDT are tables which are stored in ordinary
memory

14

LGDT instruction

* Load GDT instruction (lgdt) loads the 48 bit

GDTR reqister with the base address and limit of

the GDT.

e This instruction is used in TOS’ boot loader

Base address of GDT (32 bits)

Limit (16 bits)

15

Segmentation and X86 Assembly

How are segments used in day-to-day assembly?

Each kind of memory access uses a certain default segment register
— %CSsS is used for fetching from memory (e.g. CALL, JMP, RET)
— %3S is used for all memory access to the stack (e.g. PUSH, POP)
— %DS is used for all other memory access (e.g. MOV)

Examples:

- PUSH $1 access %S5S:%ESP
- MOV S1, (SEAX) access %DS: (%EAX)
- JMP $100 access $CS5:5100

The content of segment registers are typically loaded only once at
boot-time and then never changed again

Segment registers can be loaded from normal x86 register, e.g.
MOVW $S0x10, %AX
movw $AX, %DS

loads the $DS segment register with 16

16

GDT for TOS (1)

« Basic idea: segments in TOS are defined such that a virtual
address is identical to the physical address.

« The GDT for TOS is constructed and loaded during the boot
process; i.e., before calling kernel main ()

« Size of the GDT is 24 bytes (== 3 * 8 bytes).

* %CS is loaded with 0x8 (GDT entry 1) and %DS and %SS are
loaded with 0x10 (GDT entry 2)

Entry | Base Limit Attributes Comments
0 - - - Dummy Entry
1 0 OxFFFFFF CODE Used for %CS

2 0 OxFFFFFF DATA Used for %DS and %SS

17

GDT for TOS (2)

 TOS uses two segment selectors:

CODE:
DATA:

1000,

10000,

816 = 1000,
10, = 10000,
Index TI/ RPL.
= ﬁoooooooooooo{Qbo/’
= 'f'ooooooooooo1qé06
1, = 14 10;= 210

ﬁ |

GDT entry 1 GDT entry 2

18

Memory Access in TOS

Given the following code:

movl $O0xB8000, $%$EAX

movb S A, ($EAX)
‘A’ is stored to 0xB8000. But how does it look exactly with
segmentation?

Since we do a regular memory access, the $DS segment is used.
The linear address is therefore 0x10: 0xB8000

— Segment 0x10
— Offset 0xB8000

Base address of the segment 0x10 is 0
Therefore the linear address is 0xB8000 + 0 = 0xB8000

Since we don’ t use paging, linear address corresponds to physical
address

Therefore, we access physical address 0xB8000

19

Inter-Segment Subroutines (1)

So far, when doing a CALL instruction, we only specified
the 32-bit offset, but not the segment sector

The segment was implicitly selected through the $CS
segment register

This is called an Intra-Segment Jump because the jump
happens within the same segment

An Inter-Segment Jump jumps between different
segments

Inter-Segment Jumps will happen in TOS only for
iInterrupts

For an Inter-Segment Subroutine call, not only the return
address is pushed on the stack, but also $CS (see next
slide)

20

Inter-Segment Subroutines (2)

Assumptions:
- %CS = 0x8
— Return address i1is OxABCD1234

When executing CALL 0xC : 0x12123434 the

following information is pushed onto the stack:
— 0x00000008 (old value of %CS as a 32-bit value)

— OxABCD1234 (return address)
For an intra-segment subroutine call only the offset part
0xABCD1234 would have been pushed on the stack

After pushing the return address on the stack, the

registers are loaded as follows:

0xC (this goes through the GDT!)
0x12123434

21

	Slide Number 1
	Objective
	Loading of Programs (1)
	Loading of Programs (2)
	Address Translation
	Segmentation and Paging - I
	Segmentation and Paging - II
	Segmentation and Paging - III
	Segmentation - Mapping
	Segmentation - Example
	Segment Descriptors
	Segment Descriptor Tables
	Anatomy of a Segment Selector and Descriptor
	Notes
	LGDT instruction
	Segmentation and X86 Assembly
	GDT for TOS (1)
	GDT for TOS (2)
	Memory Access in TOS
	Inter-Segment Subroutines (1)
	Inter-Segment Subroutines (2)

