
1

TOS Arno Puder

2

Objective

• Explain the x86 segmentation model
• Explain how a virtual address is translated

by the x86 to a physical address
• Explain the various x86 datastructures and

hardware registers

3

Loading of Programs (1)
• Every program is linked by the linker to be a self-

contained executable.
• Programs are linked as if they were loaded to address 0.

I.e., all references (jumps, calls, memory loads) are done
relative to address 0.

• When a program is loaded into memory, it will be
assigned an available region of memory.

• All references need to be adjusted to the base address
of this memory region (see next slide).

• Beware: some references (such as 0xB8000) should not
be adjusted!

• Note: adjusting references does not guard against one
process corrupting another process’ memory!

4

Loading of Programs (2)

18 …

10 movl 18,%eax

0 jump 10

20 call 10

10 …

0 jump 20

18 …

10 movl 18,%eax

0 jump 10

40 call 30

30 …

20 jump 40

60

40

30

20

18

10

0
Program 1

Program 2

Main Memory

5

Address Translation
• “Patching” a program as shown on the previous slide is a

complicated matter and also does not protect processes amongst
each other.

• A better way would be to have hardware support that does not
require this patching.

• This is the goal of address translation: instead of patching a program
manually, (virtual) addresses are translated ‘on the fly’.

• Physical memory in a computer is a linear array of bytes called
physical address space.

• Physical memory is not directly accessed by programs. They use
virtual memory which maps to physical memory.

• Chief benefit of virtual memory is protection as each program
(process) gets its own address space. A program can not access
address space of another program.

6

Segmentation and Paging - I
• Segmentation and paging are two address translation

techniques supported by the x86.
• Segmentation is a “two dimensional” virtual address

space defined by selector:offset.
• Each selector value points to a segment and the offset

value points to the offset within that segment
– Selector: 16 bits
– Offset: 32 bits

• Segmentation maps virtual addresses to linear
addresses.

• All x86 programs have to go through segmentation.

7

Segmentation and Paging - II
• Linear address space is 32 bit address space for

each task
• Allows up to a maximum of 4 GB (== 232 bytes)
• Paging maps linear address space to physical

address space
• Paging can be enabled or disabled (we will not

use paging!)
• If paging is disabled, then the linear address

corresponds to the physical address
• Both segmentation and paging use translation

tables

8

Segmentation and Paging - III

0....15 0…………31

Selector : Offset

Segmentation

0…………31

Virtual address Linear address

Paging

0…………31

Physical address

(Paging disabled)

9

Segmentation - Mapping
• Variable size units of memory

called segments form the basis
of the virtual-to-linear address
translation

• Segments are defined by:
– base address
– address limit
– segment attributes

• Addresses within one segment
are relative to the base
address of that segment.

• Idea: load each program into
its own segment!

Segment A

Segment B

Segment C
0

0

0

Virtual Address Space Linear Address Space

Limit(C)

Limit(B)

Limit(A)

Base(C)

Base(B)

Base(A)

B+Limit(C)

B+Limit(B)

B+Limit(A)

10

Segmentation - Example

• Segment 1 is defined as follows:
– Base address: 0x50000
– Limit: 0xffff

Virtual address Linear address

1:0 0x50000

1:0x67 0x50067

1:0x10000 Illegal. Beyond
limit of segment

11

Segment Descriptors
• The x86 contains six segment registers: %CS, %DS,

%ES, %FS, %GS, and %SS
• A segment register contains a 16 bit segment selector
• Segment selector is an index to the segment descriptor

stored in a descriptor table
• Each segment descriptor contains important information

about the segment: base, limit, attributes
• The 4 bit type attribute specifies if the segment is read

only/read write/execute or other specific combinations
thereof

12

Segment Descriptor Tables
• Segment descriptor tables hold the segment descriptors
• There are two types local (LDT) and global (GDT). The

virtual address space is distributed between these two
tables

• GDT remains the same for all processes, while the LDT
is private to each process

• GDT can be used to store information about OS code
and data segments accessible to all programs. LDT can
be used to store code and data segments for that
program

• GDT also stores other types of descriptors (not relevant
to the topic here)

• In TOS we only use the GDT

13

Anatomy of a Segment Selector
and Descriptor

Segment Limit

(15…………0)

Segment Base

(23………..………0)

Segment
Base

(31…24)

Type

(0…3)

(Other
attributes)

RPLT
I

Descriptor Index (13 bits)

Used by protection
mechanism

(2 bits)
GDT or LDT

(1 bit)

.

.

.

.

.

GDT or LDT
Segment Selector

Segment Descriptor

14

Notes
• Size of one Segment Descriptor is 8 bytes
• Note that the 32 bits of the segment base are not stored

consecutively in the Segment Descriptor
• RPL (Requested Privilege Level). Should always be set

to 0 in TOS
• TI (Table Index). Should always be set to 0 in TOS
• The only two segment types we will use in TOS are:

– Data: 0x2
– Code: 0xa

• GDT and LDT are tables which are stored in ordinary
memory

15

LGDT instruction
• Load GDT instruction (lgdt) loads the 48 bit

GDTR register with the base address and limit of
the GDT.

• This instruction is used in TOS’ boot loader

Base address of GDT (32 bits) Limit (16 bits)

16

Segmentation and X86 Assembly
• How are segments used in day-to-day assembly?
• Each kind of memory access uses a certain default segment register

– %CS is used for fetching from memory (e.g. CALL, JMP, RET)
– %SS is used for all memory access to the stack (e.g. PUSH, POP)
– %DS is used for all other memory access (e.g. MOV)

• Examples:
– PUSH $1 access %SS:%ESP
– MOV $1, (%EAX) access %DS:(%EAX)
– JMP $100 access %CS:$100

• The content of segment registers are typically loaded only once at
boot-time and then never changed again

• Segment registers can be loaded from normal x86 register, e.g.
movw $0x10, %AX
movw %AX, %DS

loads the %DS segment register with 16

17

GDT for TOS (1)
• Basic idea: segments in TOS are defined such that a virtual

address is identical to the physical address.
• The GDT for TOS is constructed and loaded during the boot

process; i.e., before calling kernel_main()
• Size of the GDT is 24 bytes (== 3 * 8 bytes).
• %CS is loaded with 0x8 (GDT entry 1) and %DS and %SS are

loaded with 0x10 (GDT entry 2)

Entry Base Limit Attributes Comments

0
1
2

-
0
0

-
0xFFFFFF
0xFFFFFF

-
CODE
DATA

Dummy Entry
Used for %CS

Used for %DS and %SS

18

• TOS uses two segment selectors:
CODE: 816 = 10002
DATA: 1016 = 100002

Index TI RPL

10002 = 0000000000001000

100002 = 0000000000010000

GDT for TOS (2)

12 = 110

GDT entry 1

102 = 210

GDT entry 2

19

Memory Access in TOS
• Given the following code:

movl $0xB8000, %EAX
movb $’A’, (%EAX)

• ‘A’ is stored to 0xB8000. But how does it look exactly with
segmentation?

• Since we do a regular memory access, the %DS segment is used.
The linear address is therefore 0x10: 0xB8000

– Segment 0x10
– Offset 0xB8000

• Base address of the segment 0x10 is 0
• Therefore the linear address is 0xB8000 + 0 = 0xB8000
• Since we don’t use paging, linear address corresponds to physical

address
• Therefore, we access physical address 0xB8000

20

Inter-Segment Subroutines (1)
• So far, when doing a CALL instruction, we only specified

the 32-bit offset, but not the segment sector
• The segment was implicitly selected through the %CS

segment register
• This is called an Intra-Segment Jump because the jump

happens within the same segment
• An Inter-Segment Jump jumps between different

segments
• Inter-Segment Jumps will happen in TOS only for

interrupts
• For an Inter-Segment Subroutine call, not only the return

address is pushed on the stack, but also %CS (see next
slide)

21

Inter-Segment Subroutines (2)
• Assumptions:

– %CS = 0x8
– Return address is 0xABCD1234

• When executing CALL 0xC : 0x12123434 the
following information is pushed onto the stack:

– 0x00000008 (old value of %CS as a 32-bit value)
– 0xABCD1234 (return address)

• For an intra-segment subroutine call only the offset part
0xABCD1234 would have been pushed on the stack

• After pushing the return address on the stack, the
registers are loaded as follows:

– %CS := 0xC (this goes through the GDT!)
– %EIP := 0x12123434

	Slide Number 1
	Objective
	Loading of Programs (1)
	Loading of Programs (2)
	Address Translation
	Segmentation and Paging - I
	Segmentation and Paging - II
	Segmentation and Paging - III
	Segmentation - Mapping
	Segmentation - Example
	Segment Descriptors
	Segment Descriptor Tables
	Anatomy of a Segment Selector and Descriptor
	Notes
	LGDT instruction
	Segmentation and X86 Assembly
	GDT for TOS (1)
	GDT for TOS (2)
	Memory Access in TOS
	Inter-Segment Subroutines (1)
	Inter-Segment Subroutines (2)

