
1

TOS Arno Puder

2

Objectives

•  Motivate the need for Inter-Process
Communication

•  Introduce a simple send/receive/reply
message passing paradigm

•  Show how to implement this paradigm

3

Current state of affairs

Status quo:
– We can create arbitrary number of processes

(up to a maximum of 20)
– TOS is non-preemptive, i.e., context switch

only happens explicitly by calling resign()
– Processes are independent of each other, i.e.,

no synchronization between processes.

4

Context Switch in TOS

Process 1

Process 2

Process 3

Time !
CPU is assigned
to process

Context switch with
resign()

5

Cooperating Processes
•  Processes are not isolated but work together. E.g.

 - Process for managing the file system
 - Process for managing the keyboard
 - Process implementing the application logic

•  Possible scenario:
 - user shell (e.g. bash) sends a message to the
 keyboard process
 - user shell “waits” until user has typed a command
 - user shell interprets command and sends
 appropriate instructions to the file system

•  What does “wait” mean? Answer: process is taken off
the ready queue because it has nothing to do

6

Inter Process Communication (IPC)

•  What is missing?
– Synchronization mechanisms to coordinate

interactions between processes
– Ability to react to hardware interrupts

•  Solution:
– A communication mechanism between

processes, also called Inter-Process
Communication.

7

IPC in TOS
•  TOS implements IPC through a set of message passing

API.
•  One process can send a message to another process.
•  A message is simply a void-pointer (void *).

Remember that all TOS processes share the same
address space. Sender and receiver have to agree what
the void-pointer is actually pointing to.

•  Apart from sending the message, the sender is blocked
until the message has been delivered to the receiver.

•  This is called the rendezvous point, because it is the
point in time where sender and receiver meet.

8

Ports
•  Messages are sent to ports; not processes.
•  A port resembles a mailbox where messages are

delivered.
•  A port is owned by exactly one process.
•  A process can own several ports.
•  A port is defined through type PORT_DEF in ~/tos/
include/kernel.h

Process 1 Process 2

Port 1

Port 2

9

Port Data Structure
•  TOS maintains an array of
MAX_PORTS ports (defined
in kernel.h)

•  magic: magic cookie
initialized to MAGIC_PORT

•  used: if this port is available
•  open: if this port is open
•  owner: pointer to the

process that owns this port
•  next: all ports owned by

the same process are in a
single linked list

typedef struct _PORT_DEF {
 unsigned magic;
 unsigned used;
 unsigned open;
 PROCESS owner;
 PROCESS blocked_list_head;
 PROCESS blocked_list_tail;
 struct _PORT_DEF *next;
} PORT_DEF;

typedef PORT_DEF* PORT;

10

IPC in TOS

•  When sending a message, we may want a
process to wait (or block)

•  Two ways to send a message in TOS:
– message(): sender is blocked until the

receiver gets the message
– send(): sender is blocked until the receiver

gets the message and calls reply()

11

Port functions in TOS
•  Port functions are implemented in file ~/tos/kernel/ipc.c
•  typedef PORT_DEF *PORT;
•  Functions:

–  PORT create_port()
Creates a new port. The owner of the new port will be the calling
process (active_proc). The return value of create_port() is
the newly created port. The port is initially open.

–  PORT create_new_port (PROCESS proc)
Creates a new port. The owner of the new port will be the process
identified by proc. The return value of create_port() is the newly
created port. The port is initially open.

–  void open_port (PORT port)
Opens a port. Only messages sent to an open port are delivered to the
receiver.

–  void close_port (PORT port)
Closes a port. Messages can still be sent to a closed port, but they are
not delivered to the receiver. If a port is closed, all incoming messages
are queued.

12

IPC functions in TOS
•  IPC functions are implemented in file ~/tos/kernel/ipc.c
•  Functions:

–  void send (PORT dest_port, void* data)
Sends a synchronous message to the port dest_port. The receiver
will be passed the void-pointer data. The sender is blocked until the
receiver replies to the sender.

–  void message (PORT dest_port, void* data)
Sends a synchronous message to the port dest_port. The receiver
will be passed the void-pointer data. The sender is unblocked after the
receiver has received the message.

–  void* receive (PROCESS* sender)
Receives a message. If no message is pending for this process, the
process becomes received blocked. This function returns the void-
pointer passed by the sender and modifies argument sender to point to
the PCB-entry of the sender.

–  void reply (PROCESS sender)
The receiver replies to a sender. The receiver must have previously
received a message from the sender and the sender must be reply
blocked.

13

create_process() - Revisited
•  New TOS processes can be created via create_process()
•  Signature: PORT create_process(void (*func) (PROCESS, PARAM),

 int prio, PARAM param, char* name)

•  A previous slide said that create_process() should return a
NULL pointer as the result.

•  This needs to be changed (you will have to modify your
implementation for create_process())

•  As part of creating a new process, the newly created process should
be given a port.

•  Use create_new_port() to create a port for the new process.
•  Save the pointer to this first port in PCB.first_port
•  Also return the pointer to this first port as the result of

create_process()

14

Process States
•  When a process is off the ready queue, it

is waiting for some event to happen
•  To distinguish what the process is waiting

for, the process can be in one of different
states

State Description
STATE_READY This is the only state in which the process is on the ready queue, ready to run
STATE_SEND_BLOCKED Process executed send(), but the receiver is not ready to receive the next message
STATE_REPLY_BLOCKED Process executed send() and the receiver has received the message, but not yet replied
STATE_RECEIVE_BLOCKED Process executed receive(), but no messages are pending
STATE_MESSAGE_BLOCKED Process executed message(), but receiver is not ready to receive the message

15

Using IPC – Scenario 1
•  In the following we show two different scenarios for using the IPC

API.
•  In scenario 1, the Boot Process creates the Receiver Process.
•  Assumptions:

–  These are the only processes in the system.
–  Both processes have priority 1.

•  Boot Process calls send(). Since the receiver is not ready to
receive a message, the sender will become send blocked
(STATE_SEND_BLOCKED).

•  When the receiver calls receive(), the pending message will be
delivered immediately (receiver is not blocked). The sender will
remain off the ready queue, but change to state reply blocked
(STATE_REPLY_BLOCKED).

•  When the receiver replies via reply(), the sender is put back onto
the ready queue. When the receiver calls resign() subsequently,
the Boot Process is scheduled again.

16

Using IPC – Scenario 1
The Receiver

void receiver_process (PROCESS self, PARAM param)
{
 PROCESS sender;
 int* data_from_sender;

 kprintf ("Location C\n");
 data_from_sender = (int*) receive (&sender);
 kprintf ("Received: %d\n“, *data_from_sender);
 reply (sender);
 kprintf ("Location D\n");
 while (1);
}

17

Using IPC – Scenario 1
The Sender

void kernel_main()
{
 PORT receiver_port;
 int data = 42;

 init_process();
 init_dispatcher();
 init_ipc();
 receiver_port = create_process (receiver_process,
 1, 0, "Receiver");
 kprintf ("Location A\n");
 send (receiver_port, &data);
 kprintf ("Location B\n");
 while (1);
}

Location A
Location C
Received: 42
Location B

Output:

18

Using IPC – Scenario 1
Time Diagram

C
re

at
e

pr
oc

es
s

S
en

d

R
ep

ly

Boot Process
(kernel_main)

receiver_process

Boot Process is off
the ready queue

Time

SEND_BLOCKED REPLY_BLOCKED

R
ec

ei
ve

19

Using IPC – Scenario 2
•  For scenario 2 we make the same assumptions as for scenario 1.
•  The only difference between scenario 1 and scenario 2 is that the

Boot Process calls resign() after creating the Receiver Process.
Otherwise the implementation is unchanged.

•  After this call to resign(), the Receiver Process is scheduled.
•  The Receiver Process calls receive(), but there is no message

pending. The receiver will be taken off the ready queue and it
becomes receive blocked (STATE_RECEIVE_BLOCKED).

•  Scheduler switches back to the Boot Process.
•  Boot Process calls send(). Since the receiver is waiting for a

message, it will be put back onto the ready queue. Since the Boot
Process still waits for a reply, it will be taken off the ready queue and
becomes reply blocked (STATE_REPLY_BLOCKED).

•  Receiver Process resumes execution after receive().
•  When the receiver replies via reply(), the sender is put back onto

the ready queue. When the receiver calls resign() subsequently,
the Boot Process is scheduled again.

20

Using IPC – Scenario 2
The Sender

void kernel_main()
{
 PORT receiver_port;
 int data = 42;

 init_process();
 init_dispatcher();
 init_ipc();
 receiver_port = create_process (receiver_process,
 1, 0, "Receiver");
 resign();
 kprintf ("Location A\n");
 send (receiver_port, &data);
 kprintf ("Location B\n");
 while (1);
}

Location C
Location A
Received: 42
Location B

Output:
Added

21

Using IPC – Scenario 2
Time Diagram

C
re

at
e

pr
oc

es
s

R
ec

ei
ve

R
ep

ly

Boot Process
(kernel_main)

receiver_process

Boot Process is off
the ready queue

Time

RECEIVE_BLOCKED

REPLY_BLOCKED

S
en

d

R
es

ig
n

Receiver Process is
off the ready queue

22

print_process()

•  The process states explained in the
previous scenarios are defined in ~/tos/
include/kernel.h

•  Remember print_process()? Make
sure it knows about those new process
states!

23

State Diagram

Ready

Send blocked

Reply blocked

Receive blocked

create_process

receive

send

send

m
es

sa
ge

receive

Message blocked

receive

m
essage

message

24

Send Blocked List (1)
•  When a process sends a message, but the receiver is

not STATE_RECEIVE_BLOCKED, the sender will
become STATE_SEND_BLOCKED (or
STATE_MESSAGE_BLOCKED)

•  Several processes might be STATE_SEND_BLOCKED
on the same receiver process

•  When the receiver eventually executes a receive(), one
of the STATE_SEND_BLOCKED processes will deliver
its message and become STATE_REPLY_BLOCKED

•  Problem: how does a receiver process know that there
are sender processes waiting to deliver a message to it?

•  Solution: there is a send blocked list for each port.
Processes on this list try to deliver a message to the
receiver process.

25

Send Blocked List (2)

•  The send blocked list is a single-linked
list:

–  Head: PORT_DEF.blocked_list_head
–  Tail: PORT_DEF.blocked_list_tail
–  Link to next node: PCB.next_blocked

•  The tail to the list is maintained in order
to efficiently add new processes to the
end of the list (why the end?)

typedef struct {
 /* ... */
 PROCESS blocked_list_head;
 PROCESS blocked_list_tail;
 /* ... */
} PORT_DEF;

typedef struct {
 /* ... */
 PROCESS next_blocked;
 /* ... */
} PCB;

26

Send Blocked List (3)

•  Process 5 owns ports 23 and 16.
•  Processes 12 and 2 tried to send a message to process 5 via port 23,

but were send blocked. There are no messages pending at port 16.
•  Next time process 5 executes a receive(), it will receive message

from process 12. After delivering the message, process 12 is taken
off the send blocked list. Process 12 will then become reply blocked.

•  New processes are always added to the end of the send blocked list
to ensure fairness.

PORT 23
 owner
 blocked_list_head
 blocked_list_tail
 next

PORT 16
 owner
 blocked_list_head
 blocked_list_tail
 next

PROCESS 5
 first_port

PROCESS 2
 next_blocked

PROCESS 12
 next_blocked

Process

Port

27

Pseudo Code for send()

send ()
{
 if (receiver is received blocked and port is open) {

 Change receiver to STATE_READY;
 Change to STATE_REPLY_BLOCKED;

 } else {
 Get on the send blocked list of the port;
 Change to STATE_SEND_BLOCKED;

 }
}

28

Pseudo Code for message()

message ()
{
 if (receiver is receive blocked and port is open) {

 Change receiver to STATE_READY;
 } else {

 Get on the send blocked list of the port;
 Change to STATE_MESSAGE_BLOCKED;

 }
}

29

Pseudo Code for receive()

receive ()
{
 if (send blocked list is not empty) {

 sender = first process on the send blocked list;
 if (sender is STATE_MESSAGE_BLOCKED)
 Change state of sender to STATE_READY;
 if (sender is STATE_SEND_BLOCKED)
 Change state of sender to STATE_REPLY_BLOCKED;

 } else {
 Change to STATE_RECEIVED_BLOCKED;

 }
}

30

Scanning the send blocked list
•  One of the things that receive() has to do is to see if there are

any processes on its send blocked list
•  Since a process can own several ports, receive() uses the

following algorithm to scan its ports:

•  Note that this algorithm does not guarantee fairness among several
ports!

PORT p = active_proc->first_port;
while (p != NULL) {
 if (p->open && p->blocked_list_head != NULL)
 // Found a process on the send blocked list
 p = p->next;
}
// Send blocked list empty. No messages pending.

31

Pseudo Code for reply()

reply ()
{
 Add the process replied to back to the ready queue;
 resign();
}

32

Parameter Passing
•  When processes are

added to the ready queue,
they are typically woken
up in the middle of
send() or receive().

•  It is sometimes necessary
to pass the input
parameters to send() to
another process.

•  This is accomplished by
temporarily storing those
parameters in the PCB.

typedef struct {
 /* ... */
 PROCESS param_proc;
 void* param_data;
 /* ... */
} PCB;

33

Assignment 5
•  Implement the functions located in ~/tos/
kernel/ipc.c:
–  create_port()
–  create_new_port()
–  open_port()
–  close_port()
–  send()
–  message()
–  receive()
–  reply()

•  Test cases: test_ipc_[1-6]

Collaboration Patterns

•  TOS’s IPC allows for different collaboration patterns that define how processes
interact with one another.

•  Simplest case (see above diagram): one client (executing send()/message()) and one
server (executing receive()/reply()).

•  It does not matter if client sends message first or receiver first tries to receive
message. Client and server are synchronized at the rendezvous point. For that
reason this form of IPC implements synchronous communication.

34

Server Client

Delegation

•  Client and server are roles.
•  A process can be both in the role of a client and a server at different points in times.
•  E.g., a process could break up a job into multiple sub-jobs and delegate each to a

different process.

35

Client Server Client/
Server

Worker Process

•  Multiple clients contact same server.
•  E.g., worker process (server) implements a file system. Clients perform file I/O

operations.
•  Server will only process one request at a time (i.e., receive() will only ever return one

message; other clients remain on the send blocked list)
•  IPC will synchronize among several clients.
•  Server encapsulates a shared resource (e.g., file system, printer, etc)

36

Client2

Client3

Server

Client1

Asynchronous Communication

•  Since client and server need a rendezvous point to deliver a message, either one will
have to be blocked until the other is ready.

•  This is called synchronous communication.
•  Asynchronous communication can be achieved by adding a special buffer process

and reversing the roles of send/receive/reply for the server.
•  In the diagram, Client can send the Server a message via the Buffer Process.
•  Buffer Process will only use receive() and reply() but never send()!
•  Server will use send() to request the next message.
•  Note that Buffer Process may need to buffer messages if one process is sending

faster than the other receives.
•  Bounded buffer: throttle sender.

37

Client Server Buffer

Pseudo Code for Buffer Process

38

Buffer messages = [];
while (1) {
 msg = receive();
 if (msg is from client) {
 messages.add(msg);
 reply;
 continue;
 }
 if (msg is from server) {
 if (messages == []) {
 reply with empty message;
 } else {
 nextMsg = messages.dequeue();
 reply(nextMsg);
 }
 }
}

Mutual Exclusion

•  Replies do not have to be sent to clients in the same order in which their messages
were delivered.

•  This is called out-of-order replies.
•  This can be used to implement mutual exclusion via a special Semaphore Process.
•  Semaphore Process will only ever call receive() and reply().
•  A client requesting entry to the critical section sends an acquire message to the

Semaphore Process.
•  If entry is granted, Semaphore Process will reply.
•  Other clients who wish to enter the critical section will be kept reply blocked.
•  When a client exits the critical section, it sends a release message to the Semaphore

Process who then replies to another client that waits for entry.
39

Client1 Client2
Sema-
phore

Pseudo Code for Semaphore Process

40

PROCESS waiting = [];
bool process_in_critical_section = false;
while (1) {
 msg = receive();
 if (msg is of type acquire) {
 if (process_in_critical_section) {
 waiting.add(process that sent msg);
 } else {
 process_in_critical_section = true;
 reply(process that sent msg);
 }
 }
 if (msg is of type release) {
 if (waiting == []) {
 process_in_critical_section = false;
 } else {
 next_process = waiting.dequeue();
 reply(next_process);
 }
 }
}

