
1

TOS Arno Puder

2

Concurrency
•  Right now we only support cooperative

multitasking. I.e., a TOS process needs to call
resign() to initiate a context switch.

•  Once TOS supports interrupts, we will be able to
support pre-emptive multitasking. I.e., a context
switch may happen between any two machine
code instructions.

•  Multiple tasks running simultaneously may
inadvertently interfere with each other

•  Example -- “Too Much Milk”

3

Too Much Milk

Person 1
Look in Fridge
Go to Store

Return with

Milk

Person 2

Look in Fridge
Go to Store
Return with Milk

Time

4

Synchronization
•  Synchronization errors are difficult to find since they are

not easily repeatable.
–  Bug only occurs with particular scheduling patterns

•  Once a bug is found, how to fix it?
–  Identify “critical sections”
–  Only let one task enter a critical section at a time using a lock
–  Other synchronization techniques (semaphores, monitors) not

covered in this course
–  Our solution: synchronization via message passing (discussed

later)

5

Too Much Milk, fixed

Acquire Lock
Look in Fridge
Go to Store
Return with Milk
Release Lock

Time

6

Too Much Milk

Person 1
Acquire Lock
Look in Fridge
Go to Store

Return with

Milk
Release Lock

Person 2

Acquire Lock
blocked

Look in Fridge

Time

7

Synchronization

•  Does the following code have a potential
synchronization problem?

void increment(int* ip)

{
 *ip = *ip + 1;

}

8

Concurrency
•  The C code from the previous slide compiles into the

following assembly:

increment:
 pushl %ebx

 movl 8(%esp), %eax # %eax = ip

 movl (%eax), %ebx # %ebx = *ip

 add 1, %ebx # %ebx = *ip + 1

 movl %ebx, (%eax) # *ip = *ip + 1
 popl %ebx

 ret

9

Concurrency

•  For the following two scenarios, we
assume global variables as follows:
int x = 5;
int* p = &x;
int* q = &x;

•  Let address of x be 0x5000
•  Process 1 executes: increment(p)
•  Process 2 executes: increment(q)

10

Concurrency – Scenario 1
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

%eax: 0x5000

%ebx: 5
%eax: 0x5000

%ebx: XXXXXXXX
Memory address 0x5000: 5

Ti
m

e

11

Concurrency – Scenario 1
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

add 1, %ebx

movl 8(%esp), %eax

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: XXXXXXXX
Memory address 0x5000: 5

12

Concurrency – Scenario 1
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

add 1, %ebx

movl %ebx, (%eax)

movl 8(%esp), %eax

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: XXXXXXXX
Memory address 0x5000: 6

13

Concurrency – Scenario 1
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

add 1, %ebx

movl %ebx, (%eax)

movl 8(%esp), %eax

movl (%eax), %ebx

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: 6
Memory address 0x5000: 6

14

Concurrency – Scenario 1
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

add 1, %ebx

movl %ebx, (%eax)

movl 8(%esp), %eax

movl (%eax), %ebx

add 1, %ebx
movl %ebx, (%eax)

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: 7

Memory address 0x5000: 7

15

Concurrency – Scenario 2
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

%eax: 0x5000

%ebx: 5
%eax: 0x5000

%ebx: XXXXXXXX
Memory address 0x5000: 5

16

Concurrency – Scenario 2
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

movl (%eax), %ebx

%eax: 0x5000

%ebx: 5
%eax: 0x5000

%ebx: 5
Memory address 0x5000: 5

17

Concurrency – Scenario 2
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

movl (%eax), %ebx

add 1, %ebx
movl %ebx, (%eax)

%eax: 0x5000

%ebx: 5
%eax: 0x5000

%ebx: 6
Memory address 0x5000: 6

18

Concurrency – Scenario 2
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

movl (%eax), %ebx

add 1, %ebx
movl %ebx, (%eax)

add 1, %ebx

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: 6
Memory address 0x5000: 6

19

Concurrency – Scenario 2
Process 1 Process 2

movl 8(%esp), %eax
movl (%eax), %ebx

movl 8(%esp), %eax

movl (%eax), %ebx

add 1, %ebx
movl %ebx, (%eax)

add 1, %ebx

movl %ebx, (%eax)

%eax: 0x5000

%ebx: 6
%eax: 0x5000

%ebx: 6
Memory address 0x5000: 6

20

Race Conditions
•  Scenario 1 executes as expected.
•  Scenario 2 leads to a so-called race condition

because context switches happen at unfortunate
moments.

•  It is called race condition, because of a “race”
between two processes.

•  Race conditions only occur rarely, but are very
difficult to debug.

•  A pre-condition for a race condition is that two
processes must access a shared resource (e.g.,
the same global variable).

21

Fixing Concurrency Bugs

•  To fix this problem, we can use a lock.
•  Operations on a lock: acquire and release
•  When one task acquires a lock, no other

task may acquire it until the first task calls
release.
–  In other words, only one task at a time may

hold the lock

22

Train Semaphore

•  Semaphore signals train if it is safe to
enter a “critical section”.

23

Fixing Concurrency Bugs
void increment(int* ip, lock* l)
{

 acquire(l);
 *ip = *ip + 1;

 release(l);

}

•  Now, a task that begins to increment *ip
must finish before another task may begin

24

Implementing Locks

•  Need help from the hardware
•  Instructions are atomic: once an

instruction begins executing, nothing else
happens until it is finished.

25

Implementing Locks
•  Every modern architecture provides some useful primitives for

implementing locks.
•  Atomic test-and-set:

–  Test a value (e.g., is value == 0) and set it in a single atomic operation
•  Intel x86 also provides atomic swap and atomic load-compute-store

(xchg).
•  Conceptually, xchg %eax,(memaddr) does the following:

 pushl %ebx # save %ebx
 movl (memaddr), %ebx # %ebx = *memaddr
 pushl %ebx # swap %eax and %ebx
 pushl %eax
 popl %ebx
 popl %eax
 movl %ebx,(memaddr) # *memaddr = %ebx
 popl %ebx # restore %ebx

26

Spin Locks
lock: dd 0 # The lock variable. 1 = locked, 0 = unlocked.

spin_acquire:

 mov $1, %eax # Set the EAX register to 1.
loop: xchg %eax,(lock) # Atomically swap the EAX register with

 # the lock variable. This will always
 # store 1 to the lock, leaving previous
 # value in the EAX register.
 test %eax, %eax # Test EAX with itself. Among other
 # things, this will set the processor's
 # Zero Flag if EAX is 0. If EAX is 0,
 # then the lock was unlocked and we just
 # locked it. Otherwise, EAX is 1 and we
 # didn't acquire the lock.
 jnz loop # Jump back to the XCHG instruction if
 # the Zero Flag is not set, the lock was
 # locked, and we need to spin.
 ret # The lock has been acquired, return to
 # the calling function.

 spin_release:
 mov $0, %eax # Set the EAX register to 0.
 xchg %eax,(lock) # Atomically swap the EAX register with
 # the lock variable.
 ret # The lock has been released.

27

Spin Locks
•  On the previous slide, the code tests a memory

location (lock). If this memory location contains
a 1, it means another process has already
obtained the lock. If the memory location is 0, it
means the lock is available. The atomic xchg
instruction is used to attempt to do an exchange
of 1 with the memory location. If %eax contains 0
after the xchg instruction, it means that the lock
was achieved by the current process. If the
%eax contains a 1 after the atomic xchg
instruction this signifies that another process
already has the lock.

28

Building a Better Lock

•  The problem with spin locks: during a
lengthy critical section, other tasks waste
CPU cycles (which is called busy wait).

•  Spin locks are great for short critical
sections.

•  For longer critical sections, we want a lock
that will cause the task to go to “sleep” if
the lock is not available.

•  “Sleep”: process is off the ready queue.

29

Building a Better Lock
struct lock {
 enum { HELD, AVAILABLE } status;
 PROCESS waiting;
}

void acquire(struct lock* l)
{
 if (l->status != AVAILABLE) {
 append(l->waiting, active_proc);
 remove_ready_queue(active_proc);
 resign();
 }
 l->status = HELD;

}

30

Locks
•  Problem: race condition inside acquire()

–  If there is a context switch after we check status but
before changing it, two processes hold the lock
simultaneously!

•  Solution: the critical section inside acquire()
is short, so use a spin lock
struct lock {
 spinlock slock;
 enum { HELD, AVAILABLE } status;
 Queue<PROCESS> waiting;
}

31

Locks - Acquire
 void acquire(struct lock* l)
 {
 spin_acquire(l->slock);
 while (l->status != AVAILABLE) {
 queue(l->waiting, active_proc);
 spin_release(l->slock);
 remove_ready_queue(active_proc);
 resign();
 spin_acquire(l->slock);
 }
 l->status = HELD;
 spin_release(l->slock);
 }

32

Locks - Release
 void release(struct lock* l)
 {
 spin_acquire(l->slock);
 l->status = AVAILABLE;
 next = dequeue(l->waiting);
 spin_release(l->slock);
 add_ready_queue(next);
 }

The call to add_ready_queue() outside the spin lock is correct!

Java - synchronized

•  Each instance of a Java class with
synchronized methods gets its own lock.

33

class SomeClass {
 synchronized void foo() {
 // ...
 }

}

class SomeClass {

 private Lock l;

 void foo() {
 acquire(l);
 // ...
 release(l);
 }

}

Processes vs. Threads
•  Process:

–  Is sandboxed to other processes by its own address space.
–  Managed by the OS.

•  Thread:
–  One process may consist of multiple threads.
–  All threads share the address space of the process.
–  Are not managed by the OS but by some library (e.g., pthreads)

•  TOS:
–  TOS does not support virtual memory.
–  We use the term “process” liberally, even though a TOS process

resembles more a thread in the traditional definition.

34

