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Concurrency 
•  Right now we only support cooperative 

multitasking. I.e., a TOS process needs to call 
resign() to initiate a context switch. 

•  Once TOS supports interrupts, we will be able to 
support pre-emptive multitasking. I.e., a context 
switch may happen between any two machine 
code instructions. 

•  Multiple tasks running simultaneously may 
inadvertently interfere with each other 

•  Example -- “Too Much Milk” 
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Too Much Milk 

Person 1 
Look in Fridge 
Go to Store 
 
 
 
Return with 

Milk 

Person 2 
 
 
Look in Fridge 
Go to Store 
Return with Milk 

Time 
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Synchronization 
•  Synchronization errors are difficult to find since they are 

not easily repeatable. 
–  Bug only occurs with particular scheduling patterns 

•  Once a bug is found, how to fix it? 
–  Identify “critical sections” 
–  Only let one task enter a critical section at a time using a lock 
–  Other synchronization techniques (semaphores, monitors) not 

covered in this course 
–  Our solution: synchronization via message passing (discussed 

later) 
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Too Much Milk, fixed 

Acquire Lock 
Look in Fridge 
Go to Store 
Return with Milk 
Release Lock 

Time 
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Too Much Milk 

Person 1 
Acquire Lock 
Look in Fridge 
Go to Store 
 
Return with 

Milk 
Release Lock 

Person 2 
 
 
 
Acquire Lock 
blocked 
 
Look in Fridge 

Time 
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Synchronization 

•  Does the following code have a potential 
synchronization problem? 

void increment(int* ip) 

{ 
 *ip = *ip + 1; 

} 
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Concurrency 
•  The C code from the previous slide compiles into the 

following assembly: 

increment: 
 pushl %ebx 

 movl 8(%esp), %eax # %eax = ip 

 movl (%eax), %ebx  # %ebx = *ip 

 add 1, %ebx   # %ebx = *ip + 1 

 movl %ebx, (%eax)  # *ip = *ip + 1 
 popl %ebx 

 ret 
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Concurrency 

•  For the following two scenarios, we 
assume global variables as follows: 
int x = 5; 
int* p = &x; 
int* q = &x; 

•  Let address of x be 0x5000 
•  Process 1 executes: increment(p) 
•  Process 2 executes: increment(q) 
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Concurrency – Scenario 1 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

 

movl 8(%esp), %eax 

 

 
 

 
%eax: 0x5000 

%ebx: 5 
%eax: 0x5000 

%ebx: XXXXXXXX 
Memory address 0x5000: 5 

Ti
m

e 
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Concurrency – Scenario 1 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

add 1, %ebx 

movl 8(%esp), %eax 

 

 
 

 
%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: XXXXXXXX 
Memory address 0x5000: 5 
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Concurrency – Scenario 1 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

add 1, %ebx 

movl %ebx, (%eax) 

movl 8(%esp), %eax 

 

 

 
%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: XXXXXXXX 
Memory address 0x5000: 6 
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Concurrency – Scenario 1 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

add 1, %ebx 

movl %ebx, (%eax) 

movl 8(%esp), %eax 

movl (%eax), %ebx 

 

 
%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: 6 
Memory address 0x5000: 6 
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Concurrency – Scenario 1 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

add 1, %ebx 

movl %ebx, (%eax) 

movl 8(%esp), %eax 

movl (%eax), %ebx 

add 1, %ebx 
movl %ebx, (%eax) 

%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: 7 

Memory address 0x5000: 7 
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Concurrency – Scenario 2 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

movl 8(%esp), %eax 

 
 

%eax: 0x5000 

%ebx: 5 
%eax: 0x5000 

%ebx: XXXXXXXX 
Memory address 0x5000: 5 
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Concurrency – Scenario 2 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

movl 8(%esp), %eax 

movl (%eax), %ebx 

 
 

 
%eax: 0x5000 

%ebx: 5 
%eax: 0x5000 

%ebx: 5 
Memory address 0x5000: 5 
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Concurrency – Scenario 2 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

movl 8(%esp), %eax 

movl (%eax), %ebx 

add 1, %ebx 
movl %ebx, (%eax) 

 

 
%eax: 0x5000 

%ebx: 5 
%eax: 0x5000 

%ebx: 6 
Memory address 0x5000: 6 
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Concurrency – Scenario 2 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

movl 8(%esp), %eax 

movl (%eax), %ebx 

add 1, %ebx 
movl %ebx, (%eax) 

add 1, %ebx 

 
%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: 6 
Memory address 0x5000: 6 
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Concurrency – Scenario 2 
Process 1 Process 2 

 

movl 8(%esp), %eax 
movl (%eax), %ebx 

movl 8(%esp), %eax 

movl (%eax), %ebx 

add 1, %ebx 
movl %ebx, (%eax) 

add 1, %ebx 

movl %ebx, (%eax) 

%eax: 0x5000 

%ebx: 6 
%eax: 0x5000 

%ebx: 6 
Memory address 0x5000: 6 
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Race Conditions 
•  Scenario 1 executes as expected. 
•  Scenario 2 leads to a so-called race condition 

because context switches happen at unfortunate 
moments. 

•  It is called race condition, because of a “race” 
between two processes. 

•  Race conditions only occur rarely, but are very 
difficult to debug. 

•  A pre-condition for a race condition is that two 
processes must access a shared resource (e.g., 
the same global variable). 
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Fixing Concurrency Bugs 

•  To fix this problem, we can use a lock. 
•  Operations on a lock: acquire and release 
•  When one task acquires a lock, no other 

task may acquire it until the first task calls 
release. 
–  In other words, only one task at a time may 

hold the lock 
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Train Semaphore 

•  Semaphore signals train if it is safe to 
enter a “critical section”. 
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Fixing Concurrency Bugs 
void increment(int* ip, lock* l) 
{ 

    acquire(l); 
    *ip = *ip + 1; 

    release(l); 

} 

•  Now, a task that begins to increment *ip 
must finish before another task may begin 
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Implementing Locks 

•  Need help from the hardware 
•  Instructions are atomic: once an 

instruction begins executing, nothing else 
happens until it is finished. 
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Implementing Locks 
•  Every modern architecture provides some useful primitives for 

implementing locks. 
•  Atomic test-and-set: 

–  Test a value (e.g., is value == 0) and set it in a single atomic operation 
•  Intel x86 also provides atomic swap and atomic load-compute-store 

(xchg). 
•  Conceptually, xchg %eax,(memaddr) does the following: 

 pushl %ebx    # save %ebx 
 movl  (memaddr), %ebx  # %ebx = *memaddr 
 pushl %ebx    # swap %eax and %ebx 
 pushl %eax 
 popl  %ebx 
 popl  %eax 
 movl  %ebx,(memaddr)  # *memaddr = %ebx 
 popl  %ebx    # restore %ebx 
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Spin Locks 
lock:  dd 0   # The lock variable. 1 = locked, 0 = unlocked. 
 
spin_acquire: 

 mov $1, %eax     # Set the EAX register to 1. 
loop:  xchg %eax,(lock)  # Atomically swap the EAX register with 

      # the lock variable. This will always 
      # store 1 to the lock, leaving previous 
      # value in the EAX register. 
 test %eax, %eax   # Test EAX with itself. Among other 
      # things, this will set the processor's 
      # Zero Flag if EAX is 0. If EAX is 0, 
      # then the lock was unlocked and we just 
      # locked it. Otherwise, EAX is 1 and we 
      # didn't acquire the lock. 
 jnz loop     # Jump back to the XCHG instruction if 
      # the Zero Flag is not set, the lock was 
      # locked, and we need to spin. 
 ret      # The lock has been acquired, return to 
      # the calling function. 

 spin_release: 
 mov $0, %eax     # Set the EAX register to 0. 
 xchg %eax,(lock)  # Atomically swap the EAX register with 
      # the lock variable. 
 ret      # The lock has been released.  
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Spin Locks 
•  On the previous slide, the code tests a memory 

location (lock). If this memory location contains 
a 1, it means another process has already 
obtained the lock. If the memory location is 0, it 
means the lock is available. The atomic xchg 
instruction is used to attempt to do an exchange 
of 1 with the memory location. If %eax contains 0 
after the xchg instruction, it means that the lock 
was achieved by the current process. If the 
%eax contains a 1 after the atomic xchg 
instruction this signifies that another process 
already has the lock.  
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Building a Better Lock 

•  The problem with spin locks: during a 
lengthy critical section, other tasks waste 
CPU cycles (which is called busy wait). 

•  Spin locks are great for short critical 
sections. 

•  For longer critical sections, we want a lock 
that will cause the task to go to “sleep” if 
the lock is not available. 

•  “Sleep”: process is off the ready queue. 



29 

Building a Better Lock 
struct lock { 
    enum { HELD, AVAILABLE } status; 
    PROCESS waiting; 
} 
 
void acquire(struct lock* l) 
{ 
 if (l->status != AVAILABLE) { 
  append(l->waiting, active_proc); 
  remove_ready_queue(active_proc); 
  resign(); 
 } 
 l->status = HELD; 

} 
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Locks 
•  Problem: race condition inside acquire() 

–  If there is a context switch after we check status but 
before changing it, two processes hold the lock 
simultaneously! 

•  Solution: the critical section inside acquire() 
is short, so use a spin lock 
struct lock { 
 spinlock slock; 
 enum { HELD, AVAILABLE } status; 
 Queue<PROCESS> waiting; 
} 
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Locks - Acquire 
 void acquire(struct lock* l) 
  { 
  spin_acquire(l->slock); 
  while (l->status != AVAILABLE) { 
   queue(l->waiting, active_proc); 
   spin_release(l->slock); 
   remove_ready_queue(active_proc); 
   resign(); 
   spin_acquire(l->slock); 
  } 
  l->status = HELD; 
  spin_release(l->slock); 
 } 
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Locks - Release 
 void release(struct lock* l) 
  { 
  spin_acquire(l->slock); 
  l->status = AVAILABLE; 
  next = dequeue(l->waiting); 
  spin_release(l->slock); 
  add_ready_queue(next); 
 } 
 

The call to add_ready_queue() outside the spin lock is correct! 



Java - synchronized 

•  Each instance of a Java class with 
synchronized methods gets its own lock. 
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class SomeClass { 
 synchronized void foo() { 
   // ... 
 } 

} 

class SomeClass { 
 
  private Lock l; 
 
 void foo() { 
  acquire(l); 
  // ... 
  release(l); 
 } 

} 



Processes vs. Threads 
•  Process: 

–  Is sandboxed to other processes by its own address space. 
–  Managed by the OS. 

•  Thread: 
–  One process may consist of multiple threads. 
–  All threads share the address space of the process. 
–  Are not managed by the OS but by some library (e.g., pthreads) 

•  TOS: 
–  TOS does not support virtual memory. 
–  We use the term “process” liberally, even though a TOS process 

resembles more a thread in the traditional definition. 
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