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Objectives

• Explain non-preemptive scheduling
• Explain step-by-step how a context switch 

works in TOS
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Status Quo
• We can create new processes in TOS.
• New processes are added to the ready queue.
• The ready queue contains all runnable 

processes.
• BUT: so far, none of these new processes ever 

gets executed.
• What is missing: running those processes!
• What needs to be done: implement a function 

that switches the context, so that another 
process gets the chance to run.
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Context switching in TOS
• First step: cooperative multi-tasking

– Pre-emptive multi-tasking will come later
– For now, a process voluntarily gives up the CPU by 

calling the function resign()

• Eventually control is passed back to the original 
caller because it is assumed that other processes 
also call resign()

• Therefore, from a process’ perspective, resign()
is not doing anything, except causing a delay 
before resign() returns
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resign() example
• Assumption: there is only 

one process in the ready 
queue

• In this example, 
resign() simply does 
nothing, like a function 
call that immediately 
returns.

• active_proc is not 
changed

.

.

.
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
.
.
.

Location A
Location B

Output
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resign() example
• Assumption: after the call to 

create_process(), there 
are two processes on the ready 
queue and process_a has a 
higher priority

• Call to resign() does a 
context switch to process_a, 
because it has the higher 
priority

• active_proc changes after 
resign

void process_a (PROCESS self, PARAM param)
{
kprintf (“Location C\n”);
assert (self == active_proc);
while (1);

}

void kernel_main()
{
init_process();
init_dispatcher();
create_process (process_a, 5, 0,

“Process A”);
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
while (1);

}

Location A
Location C

Output
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resign() example
• Assumption: after the call to 

create_process(), there are 
two processes on the ready queue and 
process_a has a higher priority

• First call to resign() switches 
context to process_a

• process_a removes itself from the 
ready queue and then calls resign()
again.  This will do a context switch 
back to the first process.

• If remove_ready_queue(self)
were not called, the program would 
print “Location D” instead of “Location 
B”

void process_a (PROCESS self, PARAM param)
{
kprintf (“Location C\n”);
remove_ready_queue (self);
resign();
kprintf (“Location D\n”);
while (1);

}

void kernel_main()
{
init_process();
init_dispatcher();
create_process (process_a, 5, 0

“Process A”);
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
while (1);

}

Location A
Location C
Location B

Output
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Understanding resign()
• resign() implements a context switch, i.e. it 

gives another process the chance to run.
• Conceptually, resign() is doing the following:

– Save the context of the current process pointed to by 
active_proc

– active_proc = dispatcher()
– Restore the context
– RET

But how does it work exactly?
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Implementing resign()
• Process 2 previously 

called resign()
• Process 1 calls resign(),

the stacks are as shown
• The goal is to “suspend”

process 1 within 
resign() and “resume”
where process 2 left off in 
resign()

• First step: save the 
registers for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)
%ESP

Stack frame of process 2

Stack frame of process 1

Used stack
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Implementing resign()
• State of process 1 is 

saved -- now we actually 
make the switch:

active_proc->esp = %ESP;

active_proc = dispatcher();

%ESP = active_proc->esp;

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP
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Implementing resign()
• Finally, we restore the 

state of process 2 by 
popping the saved 
register values from the 
stack

• Note, the registers were 
stored on the stack when 
process 2 entered 
resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP
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Implementing resign()
• We’re done -- when we 

finish with the ret
instruction, we jump back 
to where process 2 called 
resign()

return addr

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP
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Understanding resign()

• It is especially important to note that the 
context pushed is not necessarily the 
same as the context popped
– recall that active_proc and (hence) %ESP 

register changed in between push and pop 
context.

– then we aren’t looking at the same stack 
now!

– but how can we be sure that the ESP register 
is pointing to some stack?
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Understanding resign()
• We made the assumption that wherever
active_proc->esp points to is where context of the 
current process is saved

• To satisfy this assumption, we always need to save the 
context of a process so that it can be popped at some time 
in the future

• We have already done this!
– for a new process we setup the stack (see create_process())
– for process calling resign() we setup the stack (identical to the 

way we did it for create_process()) before call to 
dispatch()

– now you should be able to connect the dots
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Implementing resign()
• By creating the initial 

stack frame carefully in 
create_process(), we 
ensure that resign()
can switch to a brand 
new process as well as 
one that previously called 
resign()

• Process 1 is active
• Process 2 was created 

with create_process()
but has never run.

self

func
(EAX)
(ECX)
(EDX)
(EBX)
(EBP)
(ESI)
(EDI)

Used stack

EIP (RET)
%ESP

Stack frame of process 2

Stack frame of process 1

param



16

Understanding resign()
• And don’t forget – because the context popped 

was different than the context pushed in the 
beginning of resign(), the return address also 
is different

• So resign() pushed one return address and 
popped another return address by clever ESP 
register manipulation

• What does this mean?
resign() returns to some other address, not to 
the caller process

• tada! we have a context switch!
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Notes on inline assembly
• As explained earlier, resign() does amongst 

others the following:
active_proc->esp = %ESP;

active_proc = dispatcher();
%ESP = active_proc->esp;

• The first and the third instruction require inline 
assembly, because the %ESP register is 
accessed.

• There is no C-instruction with which this could 
be achieved, that is why inline assembly is 
necessary.
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Accessing the Stack Pointer
• This can be accomplished with the following instructions:

/* Save the stack pointer to the PCB */
asm ("movl %%esp,%0" : "=r" (active_proc->esp) : );
/* Select a new process to run */
active_proc = dispatcher();
/* Load the stack pointer from the PCB */
asm ("movl %0,%%esp" : : "r" (active_proc->esp));

• Notes:
– The register name %ESP has to be prefixed with another %
– The specifier “=r” means “an output parameter that should be 

placed in an x86 register”
– The specifier “r” means “an input parameter that should be 

placed in an x86 register”
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Example of resign()

• Process 1 is active, it calls resign()
• Process 2 previously called resign(), it 

is ready to run but not currently running.
• Inside resign(), assume that 
dispatcher() returns process 2 so we 
must perform a switch from process 1 to 
process 2.
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Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr %ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

• First step: save the registers for process 1
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Example of resign()

• First step: save the registers for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Example of resign()

• Next step: save the stack pointer for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Example of resign()

• Next step: choose new process- dispatcher()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: choose new process- dispatcher()
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Example of resign()

• Next step: restore the stack pointer for process 2

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: restore the stack pointer for process 2
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Example of resign()

• Next step: restore the registers for process 2

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Example of resign()

return addr

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: restore the registers for process 2
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Example of resign()

• Finished!  We return from resign() and 
process 2 continues where it left off

return addr

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI
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Context Switch
• Context switch is implemented by one function:

void resign()
• This function is located in the file ~/tos/kernel/dispatch.c
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Assignment 4
• Implement resign() (in dispatch.c)
• Test cases:

– test_resign_1

– test_resign_2

– test_resign_3

– test_resign_4

– test_resign_5

– test_resign_6

• Hint: the tests for assignment 4 may fail because of 
errors in assignment 3!
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Assignment 4 Hints
• This project is relatively straightforward to code, 

but difficult to debug
• In general, using assert is a good thing but here 

it is dangerous:
active_proc = dispatcher();

assert(active_proc != NULL);

• Calling assert pushes arguments on the stack 
but we are trying to manually manage the stack!
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Safe assertions in resign
• In this case, we can get work around the 

problem:
void check_active() {

assert(active_proc != NULL);
}
…
active_proc = dispatcher();
check_active();

• Inside resign(), we call check_active()
which has no arguments so no stack problems

• This approach is only necessary inside 
resign()
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Inline Assembly

• For simple self-contained instructions:
asm(“pushl %eax”);

• But sometimes we need to refer to a C 
expression inside the inline assembly:
asm(“movl %esp, active_proc->esp”);

• Things get really messy here, just cut-and-
paste from the next slide!
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Inline Assembly
• The middle steps of resign():

/* Save the stack pointer to the PCB */
asm ("movl %%esp,%0" : "=r" (active_proc->esp) : );

/* Select a new process to run */
active_proc = dispatcher();

/* Load the stack pointer from the PCB */
asm ("movl %0,%%esp" : : "r" (active_proc->esp));

• Notes the register name %esp has to be prefixed with 
another %



Revisiting become_zombie()
• The current become_zombie() implementation is as follows:

void become_zombie()
{

active_proc->state = STATE_ZOMBIE;
while (1);

}

• The endless loop is just needlessly burning CPU cycles. With 
resign() this can done more efficiently:
void become_zombie()
{

active_proc->state = STATE_ZOMBIE;
remove_ready_queue(active_proc);
resign();
// Never reached
while (1);

}

36
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PacMan (1)
• Earlier you were told to create several ghost processes in 

init_pacman() via:
int i;
for (i = 0; i < num_ghosts; i++)

create_process(ghost_proc, 3, 0, "Ghost");

• It was said although you create several ghost processes, you will not 
see them yet, because they will not yet get scheduled.

• After the for-loop, add a call to resign() as the next experiment.
• Because the ghost process has a higher priority than the boot 

process, you should see one ghost.
• Note: you will only see one ghost, even though you might have 

created several ghost processes (why?)
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PacMan (2)
• The reason you will see only one ghost is because TOS only supports 

cooperative multitasking at this point.
• In order to see the other ghosts, each ghost needs to voluntarily relinquish 

control of the CPU by making a call to resign().
• Earlier you were told to implement a function called create_new_ghost()

according to the following pseudo code:

• Add a call to resign() in that function as indicated above. Now you should 
see several ghosts!

void create_new_ghost()
{

GHOST ghost;
init_ghost(&ghost);
while (1) {

remove ghost at old position (using remove_cursor())
compute new position of ghost
show ghost at new position (using show_cursor())
do a delay
resign()

}
}
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