
1

TOS Arno Puder

2

Objectives

• Explain non-preemptive scheduling
• Explain step-by-step how a context switch

works in TOS

3

Status Quo
• We can create new processes in TOS.
• New processes are added to the ready queue.
• The ready queue contains all runnable

processes.
• BUT: so far, none of these new processes ever

gets executed.
• What is missing: running those processes!
• What needs to be done: implement a function

that switches the context, so that another
process gets the chance to run.

4

Context switching in TOS
• First step: cooperative multi-tasking

– Pre-emptive multi-tasking will come later
– For now, a process voluntarily gives up the CPU by

calling the function resign()

• Eventually control is passed back to the original
caller because it is assumed that other processes
also call resign()

• Therefore, from a process’ perspective, resign()
is not doing anything, except causing a delay
before resign() returns

5

resign() example
• Assumption: there is only

one process in the ready
queue

• In this example,
resign() simply does
nothing, like a function
call that immediately
returns.

• active_proc is not
changed

.

.

.
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
.
.
.

Location A
Location B

Output

6

resign() example
• Assumption: after the call to

create_process(), there
are two processes on the ready
queue and process_a has a
higher priority

• Call to resign() does a
context switch to process_a,
because it has the higher
priority

• active_proc changes after
resign

void process_a (PROCESS self, PARAM param)
{
kprintf (“Location C\n”);
assert (self == active_proc);
while (1);

}

void kernel_main()
{
init_process();
init_dispatcher();
create_process (process_a, 5, 0,

“Process A”);
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
while (1);

}

Location A
Location C

Output

7

resign() example
• Assumption: after the call to

create_process(), there are
two processes on the ready queue and
process_a has a higher priority

• First call to resign() switches
context to process_a

• process_a removes itself from the
ready queue and then calls resign()
again. This will do a context switch
back to the first process.

• If remove_ready_queue(self)
were not called, the program would
print “Location D” instead of “Location
B”

void process_a (PROCESS self, PARAM param)
{
kprintf (“Location C\n”);
remove_ready_queue (self);
resign();
kprintf (“Location D\n”);
while (1);

}

void kernel_main()
{
init_process();
init_dispatcher();
create_process (process_a, 5, 0

“Process A”);
kprintf (“Location A\n”);
resign();
kprintf (“Location B\n”);
while (1);

}

Location A
Location C
Location B

Output

8

Understanding resign()
• resign() implements a context switch, i.e. it

gives another process the chance to run.
• Conceptually, resign() is doing the following:

– Save the context of the current process pointed to by
active_proc

– active_proc = dispatcher()
– Restore the context
– RET

But how does it work exactly?

9

Implementing resign()
• Process 2 previously

called resign()
• Process 1 calls resign(),

the stacks are as shown
• The goal is to “suspend”

process 1 within
resign() and “resume”
where process 2 left off in
resign()

• First step: save the
registers for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)
%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

10

Implementing resign()
• State of process 1 is

saved -- now we actually
make the switch:

active_proc->esp = %ESP;

active_proc = dispatcher();

%ESP = active_proc->esp;

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP

11

Implementing resign()
• Finally, we restore the

state of process 2 by
popping the saved
register values from the
stack

• Note, the registers were
stored on the stack when
process 2 entered
resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP

12

Implementing resign()
• We’re done -- when we

finish with the ret
instruction, we jump back
to where process 2 called
resign()

return addr

Used stack

EIP (RET)

Stack frame of process 2

Stack frame of process 1

Used stack

EAX
ECX
EDX
EBX
EBP
ESI
EDI

%ESP

13

Understanding resign()

• It is especially important to note that the
context pushed is not necessarily the
same as the context popped
– recall that active_proc and (hence) %ESP

register changed in between push and pop
context.

– then we aren’t looking at the same stack
now!

– but how can we be sure that the ESP register
is pointing to some stack?

14

Understanding resign()
• We made the assumption that wherever
active_proc->esp points to is where context of the
current process is saved

• To satisfy this assumption, we always need to save the
context of a process so that it can be popped at some time
in the future

• We have already done this!
– for a new process we setup the stack (see create_process())
– for process calling resign() we setup the stack (identical to the

way we did it for create_process()) before call to
dispatch()

– now you should be able to connect the dots

15

Implementing resign()
• By creating the initial

stack frame carefully in
create_process(), we
ensure that resign()
can switch to a brand
new process as well as
one that previously called
resign()

• Process 1 is active
• Process 2 was created

with create_process()
but has never run.

self

func
(EAX)
(ECX)
(EDX)
(EBX)
(EBP)
(ESI)
(EDI)

Used stack

EIP (RET)
%ESP

Stack frame of process 2

Stack frame of process 1

param

16

Understanding resign()
• And don’t forget – because the context popped

was different than the context pushed in the
beginning of resign(), the return address also
is different

• So resign() pushed one return address and
popped another return address by clever ESP
register manipulation

• What does this mean?
resign() returns to some other address, not to
the caller process

• tada! we have a context switch!

17

Notes on inline assembly
• As explained earlier, resign() does amongst

others the following:
active_proc->esp = %ESP;

active_proc = dispatcher();
%ESP = active_proc->esp;

• The first and the third instruction require inline
assembly, because the %ESP register is
accessed.

• There is no C-instruction with which this could
be achieved, that is why inline assembly is
necessary.

18

Accessing the Stack Pointer
• This can be accomplished with the following instructions:

/* Save the stack pointer to the PCB */
asm ("movl %%esp,%0" : "=r" (active_proc->esp) :);
/* Select a new process to run */
active_proc = dispatcher();
/* Load the stack pointer from the PCB */
asm ("movl %0,%%esp" : : "r" (active_proc->esp));

• Notes:
– The register name %ESP has to be prefixed with another %
– The specifier “=r” means “an output parameter that should be

placed in an x86 register”
– The specifier “r” means “an input parameter that should be

placed in an x86 register”

19

Example of resign()

• Process 1 is active, it calls resign()
• Process 2 previously called resign(), it

is ready to run but not currently running.
• Inside resign(), assume that
dispatcher() returns process 2 so we
must perform a switch from process 1 to
process 2.

20

Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr %ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

• First step: save the registers for process 1

21

Example of resign()

• First step: save the registers for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

22

Example of resign()

• Next step: save the stack pointer for process 1

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

23

Example of resign()

• Next step: choose new process- dispatcher()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

24

Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: choose new process- dispatcher()

25

Example of resign()

• Next step: restore the stack pointer for process 2

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

26

Example of resign()

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: restore the stack pointer for process 2

27

Example of resign()

• Next step: restore the registers for process 2

return addr
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

28

Example of resign()

return addr

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

• Next step: restore the registers for process 2

29

Example of resign()

• Finished! We return from resign() and
process 2 continues where it left off

return addr

Used stack

return addr

%ESP

Stack frame of process 2

Stack frame of process 1

Used stack

name: “Process 2”

esp:

name: “Process 1”

esp:

PCB

PCB

active_proc:

EAX
ECX
EDX
EBX
EBP
ESI
EDI

30

Context Switch
• Context switch is implemented by one function:

void resign()
• This function is located in the file ~/tos/kernel/dispatch.c

31

Assignment 4
• Implement resign() (in dispatch.c)
• Test cases:

– test_resign_1

– test_resign_2

– test_resign_3

– test_resign_4

– test_resign_5

– test_resign_6

• Hint: the tests for assignment 4 may fail because of
errors in assignment 3!

32

Assignment 4 Hints
• This project is relatively straightforward to code,

but difficult to debug
• In general, using assert is a good thing but here

it is dangerous:
active_proc = dispatcher();

assert(active_proc != NULL);

• Calling assert pushes arguments on the stack
but we are trying to manually manage the stack!

33

Safe assertions in resign
• In this case, we can get work around the

problem:
void check_active() {

assert(active_proc != NULL);
}
…
active_proc = dispatcher();
check_active();

• Inside resign(), we call check_active()
which has no arguments so no stack problems

• This approach is only necessary inside
resign()

34

Inline Assembly

• For simple self-contained instructions:
asm(“pushl %eax”);

• But sometimes we need to refer to a C
expression inside the inline assembly:
asm(“movl %esp, active_proc->esp”);

• Things get really messy here, just cut-and-
paste from the next slide!

35

Inline Assembly
• The middle steps of resign():

/* Save the stack pointer to the PCB */
asm ("movl %%esp,%0" : "=r" (active_proc->esp) :);

/* Select a new process to run */
active_proc = dispatcher();

/* Load the stack pointer from the PCB */
asm ("movl %0,%%esp" : : "r" (active_proc->esp));

• Notes the register name %esp has to be prefixed with
another %

Revisiting become_zombie()
• The current become_zombie() implementation is as follows:

void become_zombie()
{

active_proc->state = STATE_ZOMBIE;
while (1);

}

• The endless loop is just needlessly burning CPU cycles. With
resign() this can done more efficiently:
void become_zombie()
{

active_proc->state = STATE_ZOMBIE;
remove_ready_queue(active_proc);
resign();
// Never reached
while (1);

}

36

37

PacMan (1)
• Earlier you were told to create several ghost processes in

init_pacman() via:
int i;
for (i = 0; i < num_ghosts; i++)

create_process(ghost_proc, 3, 0, "Ghost");

• It was said although you create several ghost processes, you will not
see them yet, because they will not yet get scheduled.

• After the for-loop, add a call to resign() as the next experiment.
• Because the ghost process has a higher priority than the boot

process, you should see one ghost.
• Note: you will only see one ghost, even though you might have

created several ghost processes (why?)

38

PacMan (2)
• The reason you will see only one ghost is because TOS only supports

cooperative multitasking at this point.
• In order to see the other ghosts, each ghost needs to voluntarily relinquish

control of the CPU by making a call to resign().
• Earlier you were told to implement a function called create_new_ghost()

according to the following pseudo code:

• Add a call to resign() in that function as indicated above. Now you should
see several ghosts!

void create_new_ghost()
{

GHOST ghost;
init_ghost(&ghost);
while (1) {

remove ghost at old position (using remove_cursor())
compute new position of ghost
show ghost at new position (using show_cursor())
do a delay
resign()

}
}

	Slide Number 1
	Objectives
	Status Quo
	Context switching in TOS
	resign() example
	resign() example
	resign() example
	Understanding resign()
	Implementing resign()
	Implementing resign()
	Implementing resign()
	Implementing resign()
	Understanding resign()
	Understanding resign()
	Implementing resign()
	Understanding resign()
	Notes on inline assembly
	Accessing the Stack Pointer
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Example of resign()
	Context Switch
	Assignment 4
	Assignment 4 Hints
	Safe assertions in resign
	Inline Assembly
	Inline Assembly
	Revisiting become_zombie()
	PacMan (1)
	PacMan (2)

