
1

TOS Arno Puder

2

Objectives

• Introduction to process management of an
operating system

• Explain step-by-step how processes are
created in TOS

3

Introduction to Processes
• What is a process?

– A process consists of the program code, the
data, the heap and the stack

– A process image is created out of a program
with the intention to be executed (e.g., *.exe
files under Windows)

• Single tasking
– There is only one process. The CPU

dedicates complete processing time to one
process

4

From Single to Multitasking
• Two identical computers each run

a process independently.
• Each computer has its own RAM

and CPU, and therefore its own
registers EIP, ESP, etc.

• Note that each process has its
own code, heap and stack space.

• Idea: move both processes into
one computer.

• Problem: then we only have one
CPU and one set of registers but
two processes!

• Solution: multitasking (time
sharing; work a bit on one
process and then work a bit on
the other process)

Code
Heap
Stack

Process 1

1 MB

0
Code
Heap
Stack

Process 2

1 MB

0
Computer 1 Computer 2

5

Multitasking
• Being able to run

more than one
process “at the same
time”

• Several processes
time-share one CPU

• Each process has its
own program code,
memory and stack as
shown in the picture

Code

Heap

Stack

Code

Heap

Stack
Process 2

Process 1

1 MB

0

6

Sharing the CPU
Time

Process 1

Process 2

Context Switch

7

Types of Multitasking
• Cooperative multitasking – running process

voluntarily relinquishes control
• Preemptive multitasking – running process is

suspended involuntary (e.g., because of a
hardware interrupt) and control given to another
process

• In both cases, “program scheduler” decides
next process to run

• Deciding which process to run next is called
Scheduling

8

Process Context
• What is the process context?

– State of a process consisting of all the x86 registers,
heap and stack.

• Where is process context used?
– Each process needs its own EIP and ESP registers.

Since there is only one “copy” of those registers, they
must be shared by all processes. EIP and ESP are
set for the currently running process. If another
process is scheduled to run, the values of EIP and
ESP are saved and re-loaded for the next process to
run. This is called a context switch.

9

Introducing TOS Processes
• TOS can have up to 20 processes.
• A process is a C-function (remember pointers to functions?)
• All TOS processes share the global variables, but each process has

its own stack
• The context of each process is stored in a PCB (Process Control

Block)
• Each process has a priority.

– Priorities are used to decide which process to run next
– Priorities must be between 0 (lowest) and 7 (highest)

• All runnable processes are added to a ready queue
• Relevant API:

– create_process(): Creates a new process
– add_ready_queue(): Add a process to the ready queue
– remove_ready_queue(): Remove a process from the ready queue
– become_zombie(): Turn the calling process into a zombie.
– dispatcher(): Select a runnable process
– resign(): Voluntarily relinquish control of the CPU

10

Process Control Block (PCB)
• Each TOS process has a PCB

record
• One PCB record describes the

context of exactly one TOS
process

• Since there are a maximum of
20 processes, the PCB is an
array with 20 PCB records.

PCB

0
1
2

19

PCB record of one
TOS process

TOS PCB Recordname state

esp priority

TOS PCB Array

11

TOS PCB: struct PCB
• This is the definition of the

PCB structure in TOS as
defined in the common header
~/tos/include/kernel.h

• PROCESS is a C-pointer to a
PCB entry

• Many of the fields will become
clear later

• Where are the x86 registers
saved? On the stack!

typedef struct _PCB {
unsigned magic;
unsigned used;
unsigned short priority;
unsigned short state;
MEM_ADDR esp;
PROCESS param_proc;
void* param_data;
PORT first_port;
PROCESS next_blocked;
PROCESS next;
PROCESS prev;
char* name;

} PCB;

typedef PCB* PROCESS;

TOS Process States
• Each process has a state that gives a high-level indication on its

current activity.
• A TOS process can be in exactly one state.
• For now, TOS supports two states (defined in include/kernel.h):

– STATE_READY: the process is ready to run and is willing to be
scheduled CPU cycles.

– STATE_ZOMBIE: a process has reached the end of its lifespan. It is
removed from the ready queue permanently and should no longer be
scheduled CPU cycles.

• Note: TOS does not have a kill_process() function (the reason
for this will become apparent later). Being a zombie is the closest
thing for a process to be “dead”.

12

13

TOS Ready Queue
• TOS Ready Queue maintains list

of runnable processes
• ready_queue is an 8 element-

sized array ordered by process
priority (0 == lowest; 7 == highest)

• Priority is required to react quickly
to interrupts

• Processes with same priority form
circular double-linked list within
that level

• Ready queue used to select next
process to run

• Global variable active_proc
points to process that the CPU is
currently executing

• PCB.next and PCB.prev are
used to implement the double
linked list.

8

0
1
2

5

6
7 134

5 10

0

ready_queue

14

Maintaining the Ready Queue
• void add_ready_queue (PROCESS p)

– Changes the state of process p to ready (p->state = STATE_READY)
– Process p is added to the ready queue.
– Process p is added at the tail of the double linked list for the appropriate priority level.
– p->priority determines to which priority level the process is added in the ready queue
– automatically maintains the double-linked list.

• void remove_ready_queue (PROCESS p)

– Process p is removed from the ready queue.
– After the removal of the process, the ready queue should be a double-linked list again with

process p removed.
– The caller of remove_ready_queue() should change the state of process p to an

appropriate state. Right now, the only state is STATE_ZOMBIE.
• become_zombie()

– Turns the caller (active_proc) into a “zombie”
(active_proc->state = STATE_ZOMBIE).

– Then it should do “nothing”: while(1);
– Will be revisited later once TOS supports context switches.

15

CPU Scheduling
• Round Robin Scheduling: Tasks just take

turns, rotate through all tasks
• Priority Scheduling: Higher-priority tasks

are scheduled before lower-priority tasks
(e.g., interactive applications get favored
over background computation)

• Real-Time Scheduling: OS makes specific
guarantees about when a task will be
scheduled

16

Scheduling
• PROCESS dispatcher() returns the next to be executed process.
• Only processes that are on the ready queue are eligible for

selection. The assumption is that there is always at least one
process on the ready queue.

• Global variable active_proc of type PROCESS always points to the
process (i.e., PCB slot) that currently owns the CPU.

• The next process is selected based on active_proc:
– If there is a process with a higher priority than

active_proc->priority, then that process will be chosen.
– Otherwise, active_proc->next will be chosen (Round-Robin

within the same priority level).

17

TOS Process Creation
• TOS is one executable file that gets

created by the linker
• The name of this executable is

tos.img

• During booting, this file gets loaded to
address 4000 into RAM.

• A process in TOS is a C-function with
the following signature:
void process_a (PROCESS,

PARAM);

• All TOS processes share the same code
and heap space but still need different
stack space.

}
640 KB

16 KB stack frame for process 0

16 KB stack frame for process 1

TOS code (tos.img)

0

1 MB

}

4000

18

TOS Process Entry Point
• A C-function designates a process in TOS.
• The process needs to be explicitly created (next slide).
• If void process_a (PROCESS, PARAM) is a TOS process, then

process_a defines the entry point of this process, i.e. the new
process will start executing from process_a().

• The new process is given the input parameters of type PROCESS and
PARAM. The latter is defined as an
unsigned long in ~/tos/include/kernel.h

• The first parameter points to the PCB entry for the newly created
process and the second parameter is an application-specific
parameter passed from parent to child process.

• Since a TOS process is implemented by a C-function, special care
must be taken to ensure that that function is never exited (there is
no caller of that function in the traditional sense). By convention, at
the end of the function become_zombie() should be called.

19

Creating a TOS process
• New TOS process can be created via create_process()
• This function is located in file ~/tos/kernel/process.c
• Signature: PORT create_process(void (*func) (PROCESS, PARAM),

int prio, PARAM param, char* name)

Input: func: function pointer that defines the entry point of
the process to be created.

param: a parameter that the parent process can pass
to the child process.

prio: Priority of the process. 0 ≤ prio ≤ 7
name: Clear text name for the process (e.g. “Boot

process”)

Output: For now, this function simply returns a NULL pointer.
The meaning of data type PORT will be explained
later.

20

Example: create_process()
void test_process(PROCESS self, PARAM param)
{

// assert(k_memcmp(self->name,
“Test process”,
k_strlen(“Test process”)+1)

== 0);
// assert(param == 42)
// ...
become_zombie();

}

void kernel_main()
{

// …
create_process(test_process, 5, 42,

"Test process");
}

21

create_process()
What does create_process (func, prio, param, name) do?

-Allocates an available PCB entry

-Initializes the elements of this PCB entry
PCB.magic = MAGIC_PCB
PCB.used = TRUE
PCB.state = STATE_READY
PCB.priority = prio
PCB.first_port = NULL
PCB.name = name

- Allocates an available 16KB stack frame for this process

- Initializes an initial stack frame (see next slide)

- Saves the stack pointer to PCB.esp

- Adds the new process to the ready queue

- Returns a NULL pointer

22

Stack of the new process
1 MB

0
TOS code

640 KB

{16 K stack
frame for
process 0

16 K stack
frame for
process 1

self

func

PROCESS actual parameter
Return address (dummy argument)
Address of new process (EIP)
EAX
ECX
EDX
EBX
EBP
ESI
EDI

Address∞

Address ∞ will be saved in PCB.esp

param PARAM actual parameter

{

23

Printing the PCB
• It is useful to get a list of all processes. Similar to ‘ps’ command in Unix
• This is done via functions print_process() and

print_all_processes() located in file ~/tos/kernel/process.c
• TOS functions:

– void print_process (WINDOW* wnd, PROCESS proc)
print the details of process proc to window wnd

– void print_all_processes (WINDOW* wnd)
print the details of all processes currently existing in TOS to window wnd

• The following process information should be displayed:
– Name of the process (PCB.name)
– State of the process (PCB.state)
– Priority of the process (PCB.priority)

• The process that is currently active (I.e., the process where active_proc
is pointing to) should also be marked by a flag

• The following screenshot show how the output could look like. You don’t
necessarily have to follow the exact same layout. The screenshot is taken
from test_create_process_3.

24

Sample Layout for
print_all_processes()

25

Note on Initializing
• There are some global variables in TOS that need to be

initialized at startup.
• Those variables are initialized in C-functions called
init_*():
– init_dispatcher(): initialize the global variables associated

with the ready queue
– init_process(): initialize the global variables associated

with process creation
• Those init-functions need to be called from

kernel_main() in order to initialize everything correctly.
• The test functions included in TOS call these functions

for you. If you run a test program there is no need to call
the init-functions explicitly

26

~/tos/kernel/main.c
#include <kernel.h>

void kernel_main()
{

init_process();
init_dispatcher();
init_ipc();
init_interrupts();
init_null_process();
init_timer();
init_com();
init_keyb();
init_shell();
become_zombie();

}

27

init_process()
• When initializing the process sub-system, the first (i.e.,

current) process becomes the boot process.
• Use PCB[0] for the boot process. Use the following

parameters to initialize the PCB entry for the boot
process:

• Note: PCB[0].esp does not need to be initialized (why?)

PCB[0].magic = MAGIC_PCB
PCB[0].used = TRUE
PCB[0].state = STATE_READY
PCB[0].priority = 1
PCB[0].first_port = NULL
PCB[0].name = “Boot process”

28

Assignment 3
• Implement the functions located in ~/tos/kernel/dispatch.c:

add_ready_queue(), remove_ready_queue(),
dispatcher(), init_dispatcher()

• Implement the functions located in ~/tos/kernel/process.c:
create_process(), print_process(),
print_all_processes(), init_process()

• Implementation for become_zombie() is already provided.
• Test cases:

– test_create_process_1

– test_create_process_2

– test_create_process_3

– test_dispatcher_1

– test_dispatcher_2

– test_dispatcher_3

• Hint: no inline assembly necessary for this assignment!

29

PacMan (1)
• Remember: The purpose of the PacMan

application is a simple game as a showcase for
some of the TOS API. You are encouraged to
implement it in order to gain a deeper
understanding of the TOS API.

• The next stage of PacMan can be implemented
when assignment 3 is completed.

• In this next stage, a new TOS process is created
for each ghost.

30

PacMan (2)
• Here is how to define the ghost process:

void ghost_proc(PROCESS self, PARAM param)
{

create_new_ghost();
}

• Note that the signature of ghost_proc follows the conventions of a
TOS process.

• Now you can create several ghost processes in init_pacman()
via:

int i;
for (i = 0; i < num_ghosts; i++)

create_process(ghost_proc, 3, 0, "Ghost");
• Note: since we have not yet implemented a context switch, creating

a ghost will not do anything! Ghost processes will be created, but
not yet scheduled. This will only be possible after the next
assignment!

	Slide Number 1
	Objectives
	Introduction to Processes
	From Single to Multitasking
	Multitasking
	Sharing the CPU
	Types of Multitasking
	Process Context
	Introducing TOS Processes
	Process Control Block (PCB)
	TOS PCB: struct PCB
	TOS Process States
	TOS Ready Queue
	Maintaining the Ready Queue
	CPU Scheduling
	Scheduling
	TOS Process Creation
	TOS Process Entry Point
	Creating a TOS process
	Example: create_process()
	create_process()
	Stack of the new process
	Printing the PCB
	Sample Layout for�print_all_processes()
	Note on Initializing
	~/tos/kernel/main.c
	init_process()
	Assignment 3
	PacMan (1)
	PacMan (2)

