
1

TOS Arno Puder

2

Objectives

•  Explain the TOS testing system
•  Explain some debugging techniques when

a program error typically crashes the
whole system

•  Explain symbolic debugging of TOS

3

Test Cases

•  TOS comes with many test cases that test the
behavior of your implementation

•  All these tests are located in ~/tos/test
•  Each test case has a name and it tests one

particular feature of your implementation, e.g.,
test_mem_1 tests the peek and poke functions

•  Each test case is stored in a separate file, e.g.,
~/tos/test/test_mem_1.c

•  If a test fails, the system will print an error code

TOS Test Center (TTC)

•  The TTC is a Java application that simplifies the
execution of test cases.

•  TTC allows to select which test cases to run.
•  TTC can launch Bochs to execute the test cases

within the emulation.
•  Shows which test cases succeeded and which

failed.
•  Provide some hints about common mistakes.
•  Screenshots of successful executions for each

test case.

5

Running Test Cases
•  Compile TOS with test cases enabled. This can be accomplished by

typing:
cd ~/tos
make tests

•  Run the TOS Test Center (TTC) via:
./run-ttc.sh

•  Once the TTC launched, select the test cases you want to run (e.g.,
test_mem_1)

•  Next click the “Bochs” button at the top of the TTC. This will launch
Bochs.

•  Once the tests completed, the TTC will show which tests failed and
which succeeded.

Sample Screenshot

Successful Run

8

Successful Test

Unsuccessful Run

10

Unsuccessful Test

Multiple Test Cases

•  If a test case is passed and there are more
selected, then Bochs and TTC continue
top-down to the next test case without
stopping. This allows multiple test cases to
be tested with one run.

•  The TTC will stop at the first erroneous
test case and will display an error
message.

12

Notes on TOS Test Cases
•  The assignment slides indicate which test cases should be run for

that particular assignment.
•  If a test cases fails, it will print out an error code. The HTML page ~/

tos/test/messages.html explains all the error codes.
•  If a test case fails, it often helps to study the implementation of the

test case to understand what it is doing. Note that some helper code
is located in ~/tos/test/common.c

•  If all test cases succeed, it doesn’t necessarily mean that the
implementation is bug free (testing vs. verification)

•  If TOS crashes (without printing any error codes), you’ll have to
employ a debugging technique explained on the following slides.

•  Always run previous test cases. If one test succeeds today, it may
fail tomorrow due to some changes you made (called a regression)

13

Debugging hints
•  If something goes wrong in TOS, the whole machine usually

crashes.
•  In that case, the first priority is to locate the line in your program that

causes the crash.
•  This can be done by carefully inserting an endless loop into your

program:

statement_1; statement_1; statement_1;
statement_2; statement_2; statement_2;
Crash_causing_statement; while(1); Crash_causing_statement;
statement_3; Crash_causing_statement; while(1);
statement_4 statement_3; statement_3;
while(1); statement_4; statement_4;

System crashes System does
not crash

System crashes

14

Debugging hints

•  Once the statement that causes the crash
has been isolated, the next step is to
understand why it crashes.

•  This requires us to know the values of C-
variables.

•  Use kprintf() to print the value of C-
variables.

15

•  Another powerful debugging tool are assertions.
•  An assertion defines a condition that you expect to be true at a

certain program location.
•  The assertion is tested at runtime.
•  If the assertion evaluates to FALSE, a detailed error message is

given.
•  TOS provides a courtesy implementation of assertions (i.e., you

don’t have to implement it).
•  However: the assertions provided in TOS assume a working

output_string() function. This means you can only use
assertions once you have implemented this basic output function.

•  Assertions are implemented through function assert() defined in
~/tos/include/assert.h

•  assert.h is automatically included if you include kernel.h

Debugging hints

16

Assertion Example (1)

Node* elem;
elem = alloc_data_item();

assert(elem != (Node*) 0);

•  This piece of code is based on the example
given earlier for dynamic memory management
techniques

•  This assertion will fail if there should not be any
more free data items

17

Assertion Example (2)
void move_cursor(WINDOW *wnd, int x, int y)
{

 assert(x >=0 && x < wnd->width);
 …

}

•  It is often useful to check input parameters.
•  The code above checks that input parameter ‘x’ is within

the allowed boundaries.

18

Assertion Tips
•  Use many assertions (assertions are your

friend!).
•  Never remove assertions once you have added

them to your program.
•  assert() is very useful in testing the validity of

input parameters of functions.
•  assert(0) always fails. Useful to mark

locations in your program that should never be
reached (e.g. default case of a switch-
statement).

Debugging with gdb
•  The latest version of TOS supports debugging via GNU’s

gdb.
•  This requires a special version of Bochs that enables

gdb debugging. The TOS installation script will
automatically generate this special version.

•  TOS’s Makefile will generate a TOS kernel image with
debug information called tos-debug.img.

•  This also requires a special version of the .bochsrc file
‘gdb-bochsrc’ that the installation script will download.

•  The recommended GUI frontend for gdb is a debugger
called ddd. See this link for a user manual:
https://www.gnu.org/software/ddd/manual/

19

20

Remote Debugging with ddd

Linux

ddd Bochs

TOS

•  Bochs will wait on TCP port 1234 for a remote debugger (such as
ddd) to connect.

•  While Bochs waits for ddd, TOS is stopped.
•  Running ddd will establish a TCP connection to Bochs and ddd

remote-controls the execution of TOS.
•  ddd uses a specially compiled version of the kernel called

tos-debug.img in order to extract the symbol table.

21

Debugging with ddd
1.   make tests
2.   ./run_ttc.sh
3.  Select test_mem_1 test
4.  Open new terminal
5.  �bochs -q -f gdb-bochsrc
6.  Open new terminal
7.   ddd
8.  In the bottom portion of ddd, type “b test_mem_1”.

This will set a breakpoint in function test_mem_1.
9.  In ddd, click on “Continue” in the floating dialog.

22 Note: all the above commands need to be run in the ‘tos’ directory.

