
1

TOS Arno Puder

2

Objectives

•  Learn how to read and write from memory
using C-pointers

•  Implement the very first TOS functions

3

Memory Access
•  Memory often needs to be manipulated manually.
•  Two operations:

 - Peek: peek (i.e. read) inside the memory
 - Poke: poke (i.e. write) to the memory

•  Warning: uncontrolled poking results in disaster!
•  We can use C-pointers to peek and poke:

 - peek: char* ptr = (char*) 0xB8000;
 char ch = *ptr;
 - poke: char ch = ‘A’;
 char *ptr = (char*) 0xB8000;
 *ptr = ch;

4

Memory functions in TOS
•  Memory functions are implemented in file tos/kernel/mem.c
•  Peeking and poking is offered for different data types: (see

typedef in ~/tos/include/kernel.h)
 - BYTE: 1 byte
 - WORD: 2 bytes
 - LONG: 4 bytes

•  Memory address is represented through C-type MEM_ADDR;
•  Functions:
 - void poke_b (MEM_ADDR addr, BYTE value);
 - void poke_w (MEM_ADDR addr, WORD value);
 - void poke_l (MEM_ADDR addr, LONG value);
 - BYTE peek_b (MEM_ADDR addr);
 - WORD peek_w (MEM_ADDR addr);
 - LONG peek_l (MEM_ADDR addr);

5

Assignment 2 (Part 1)

•  Implement the functions located in ~/
tos/kernel/mem.c:
– peek_b(), peek_w(), peek_l()
– poke_b(), poke_w(), poke_l()

•  Test case:
– test_mem_1

6

TOS Arno Puder

7

Video
•  The video can operate in several different

modes:
–  Text mode: initial mode when the PC is turned on.
–  Graphical mode: high resolution mode that is typically

activated by a windowing system (not used in TOS).
•  Text mode:

–  25 rows (numbered 0-24)
–  80 columns (numbered 0-79)
–  top left corner of screen: row 0, column 0
–  lower right corner of screen: row 24, column 79
–  screen can display 2000 (25 X 80) characters

8

Outputting text
•  Video is memory mapped. The area of memory that is

provided for the video is called Video Display Area.
•  The base address of the Video Display Area is 0xB8000.
•  In text mode there are 25 X 80 = 2000 visible characters.
•  Each visible character is represented by two bytes in the

Video Display Area:
–  The character (e.g., ‘A’, ‘Z’, ‘0’. …)
–  The character attributes (e.g. color, intensity)

•  The size of the Video Display Area is therefore:
2 X 2000 = 4000 bytes.

•  A character is represented by its ASCII value:
 ‘A’ = 0x41 = 65
 ‘0’ = 0x30 = 48

9

Layout of Video Display Area

2000

1 2 3

Video Screen

Attr
Char

Attr
Char
Attr

Char
Attr

Char

0XB8002
0XB8001
0XB8000

Main Memory

2000
2000

3
3
2
2
1
1

0XB8000

10

PC Display Characters

•  The above table shows which characters will be
visible if poked to the video display area.

•  0x41 == 6510 == ‘A’
•  0x61 == 9710 == ‘a’

11

Character Attributes

Attribute: BL R G B I R G B
Bit number: 7 6 5 4 3 2 1 0

Background Foreground

COLOR I R G B HEX COLOR I R G B HEX
Black 0 0 0 0 0 Gray 1 0 0 0 8
Blue 0 0 0 1 1 Light blue 1 0 0 1 9
Gree 0 0 1 0 2 Light green 1 0 1 0 A
Cyan 0 0 1 1 3 Light cyan 1 0 1 1 B
Red 0 1 0 0 4 Light red 1 1 0 0 C
Magenta 0 1 0 1 5 Light magenta 1 1 0 1 D
Brown 0 1 1 0 6 Yellow 1 1 1 0 E
White 0 1 1 1 7 Bright white 1 1 1 1 F

12

Character Attribute Examples

BL R G B I R G B HEX
Black Blue 0 0 0 0 0 0 0 1 01
Blue Red 0 0 0 1 0 1 0 0 14
Green Cyan 0 0 1 0 0 0 1 1 23
White Light magenta 0 1 1 1 1 1 0 1 7D
Green Gray (blinking) 1 0 1 0 1 0 0 0 A8

BACKGROUND BACK-
GROUND

FORE-
GROUND

FOREGROUND

In TOS we will just simply use bright white (0x0F)
as the only color for all output.

13

Programming the Video Display

•  Since the video display area is memory mapped,
output is created by changing the contents of the
memory.

•  We can use the poke functions to accomplish this.
•  E.g. output a white ‘A’ in the top left corner of the

screen:
 poke_b(0xB8000, ‘A’);

 poke_b(0xB8001, 0x0F);
 or:
 poke_w(0xB8000, ‘A’ | 0x0F00);

14

Windowing System
•  We will implement a small text-based windowing

system in TOS.
•  The purpose is to allow each process to

generate output in its own window.
•  TOS’ windowing system is based on the text-

mode (I.e., no graphics, no mouse!)
•  A window is simply a rectangular region of the

video display area.
•  We will not get fancy with this:

–  Windows are not allowed to overlap.
–  No need to draw borders around the windows.

15

Definition of a Window
•  (x, y): the top left corner of the window.
•  (width, height): size of the window.
•  (cursor_x, cursor_y): the location of the cursor

relative to the top-left corner of the window.
•  cursor_char: character used as the cursor.

// kernel.h
typedef struct {
 int x, y;
 int width, height;
 int cursor_x, cursor_y;
 char cursor_char;
} WINDOW;

(cursor_x,
cursor_y)

(x,y) width

height

Video Display Area

16

Invariants

•  The following conditions must be true for all
windows:
–  0 ≤ x < 80
–  0 ≤ y < 25
–  x + width < 80
–  y + height < 25
–  0 ≤ cursor_x < width
–  0 ≤ cursor_y < height

•  Furthermore it is assumed that no two windows
overlap.

17

Windowing
functions in TOS

•  Windowing functions are implemented in file ~/tos/
kernel/window.c

•  Functions:
–  clear_window(WINDOW* wnd)

Clear the window. Content of the window is erased and the
cursor is placed at the top left corner of the window.

–  move_cursor(WINDOW* wnd, int x, int y)
The position of the cursor is set to be (x, y). Note that this
position has to be within the boundaries of the window. The
position is relative to the top-left corner of the window.

–  show_cursor(WINDOW* wnd)
Shows the cursor of the window by displaying cursor_char at
the current position of the cursor location.

–  remove_cursor(WINDOW* wnd)
Removes the cursor of the window by displaying a blank
character at the current position of the cursor location.

18

Windowing
functions in TOS

•  Functions:
–  output_char(WINDOW* wnd, unsigned char ch)

‘ch’ is displayed at the current cursor location of the window.
The cursor is advanced to the next location.

–  output_string(WINDOW* wnd, const char* str)
‘str’ is a string that is displayed in the window. The cursor is
advanced accordingly.

•  Notes:
–  If ‘\n’ is printed, the cursor should advance to the beginning of

the next line.
–  The backspace, ‘\b’ character should also be handled. This

includes removing the appropriate character and updating the
cursor display. Also wrap-around must be implemented.

–  The cursor has to stay within the boundaries of the window. If
the cursor reaches the right border of the window, it needs to be
positions at the beginning of the next line. If the cursor is at the
bottom of the window, the contents of the whole window has to
scroll up one line (thereby erasing the first line of the window).

19

wprintf()
•  wprintf() is TOS‘es version of the familiar printf()

function from the C-library.
•  ‘w‘ stands for ‘Window‘ to make sure the C-library

version is not used by accident.
•  wprintf() prints its output to a TOS window.
•  TOS comes with an implementation of wprintf(),

located in ~/tos/kernel/window.c
•  wprintf() only works once the functions
output_char(), and output_string() work!

•  Prototype of wprintf():
void wprintf(WINDOW* wnd,
 const char* fmt, ...);

20

Using wprintf()
•  The following examples show the usage of wprintf(). Apart

from the fact that the first parameter designates the window where
the output will be made, its usage is identical to printf() from the
C-standard library.

•  wprintf(wnd, “Hello World!\n”);
Hello World!

•  wprint(wnd, “Sum of 3 and 4 = %d\n”, 3 + 4);
Sum of 3 and 4 = 7

•  wprintf(wnd, “20 in hex is 0x%x\n”, 20);
20 in hex is 0x14

•  wprintf(wnd, “20 in binary is 0b%b\n”, 20);
20 in binary is 0b10100

•  wprintf(wnd, “A char (%c) and an integer (%d)\n”,
 ‘A’, 20);
A char (A) and an integer (20)

21

kprintf()
•  ~/tos/kernel/window.c has the following definition of

a window that covers the complete screen:
static WINDOW kernel_window_def =
 {0, 0, 80, 25, 0, 0, ' '};
WINDOW* kernel_window =
&kernel_window_def;

•  kprintf() (kernel print) prints into this window.
•  Prototype of kprintf():
void kprintf(const char* fmt, ...);

•  kprintf(...) is a short-form for
wprintf(kernel_window, ...)

22

Assignment 2 (Part 2)
•  Implement the functions located in ~/tos/kernel/
window.c:
–  clear_window()
–  move_cursor()
–  show_cursor()
–  remove_cursor()
–  output_char()
–  output_string()

•  Test cases:
–  test_window_1 - test_window_5
–  test_window_2 - test_window_6
–  test_window_3 - test_window_7
–  test_window_4

23

PacMan (1)
•  The purpose of the PacMan application is a simple game

as a showcase for some of the TOS API.
•  You are encouraged to implement it in order to gain a

deeper understanding of the TOS API.
•  It is up to you how elaborate you want to implement the

game logic.
•  A very simple graphic interface is provided for your

convenience.
•  The implementation can be found in ~/tos/kernel/
pacman.c

•  The first stage of PacMan can be implemented when
assignment 2 is completed.

24

PacMan (2)
•  After completing assignment 2, compile the TOS kernel

via “make” (not “make tests”) and run it inside of
Bochs. You should see the PacMan maze.

•  In pacman.c, create a function called
create_new_ghost() according to the following
pseudo code:

void create_new_ghost()
{
 GHOST ghost;
 init_ghost(&ghost);
 while (1) {
 remove ghost at old position (using remove_cursor())
 compute new position of ghost
 show ghost at new position (using show_cursor())
 do a delay
 }
}

25

PacMan (3)
•  init_shell() (located in ~/tos/kernel/shell.c) calls

init_pacman() and already defines a window of proper size and
position.

•  Make sure you call create_new_ghost() from within
init_pacman().

•  At this stage, all that will happen is that one ghost moves through
the maze.

•  Make sure that the ghost does not walk through walls (hint: use
array maze[] for this)

•  You can implement any behavior by which the ghost moves through
the maze (random, always turn left, etc)

•  The delay mentioned on the previous slide can be accomplished by
a big for-loop that does nothing. The trick is to find the right number
of iterations so that the ghost does not move too fast or too slow.
Experiment!

