
1

TOS Arno Puder

2

Objectives

•  Basic knowledge of C and C++ should
have been taught in an introductory class
on programming

•  In the following we focus on some finer
points of C:
– External declarations
– Pointers
– Dynamic data structures using pointers
– Function pointers

3

Extern Declarations
my_incl.h

extern int my_var;

prog1.c prog2.c
#include “my_incl.h”

void f()

{

 my_var = 1;

}

#include “my_incl.h”

int my_var;

void g()

{

 my_var = 0;

}

4

External Declarations
•  my_var is an external identifier
•  It is introduced to the compiler by extern int my_var;
•  The compiler does not yet allocate memory for my_var,

but programs can start using it (e.g. in prog1.c)
•  Variable must be declared exactly once in one of the

translation units (e.g. prog2.c). With the declaration the
compiler allocates memory

•  The linker resolves all external references (e.g. my_var in
prog1.c refers to the declaration in prog2.c)

•  Note that there is a difference in C and C++: in C it is
permissible to have a global symbol declared more than
once. The linker will not complain about this.

5

Memory allocation
int x;
int y;

void main()
{
 x = 1;
 y = 2;
 …
}

•  for each variable declaration, the
compiler allocates memory

•  Variable x is stored at address
1030

•  Variable y is stored at address
2050

•  The address operator “&”
determines the address. E.g. &x
is 1030

Machine instructions
for main()

0
1030 2050
1 2

x y

1 MB
… …

6

Pointers
int x;
int *p;

void main()
{
 x = 1;
 p = &x;
 …
}

•  p is a pointer to an integer
•  p as a global variable is also

allocated memory by the compiler
(e.g. &p is 3100)

•  p = &x; means that p is
assigned the address of x

•  Content of memory location 1030
is 1

•  Content of memory location 3100
is 1030

0 1030 3100
1 1030

x p

1 MB
…… …

7

Pointers
/* unix */
void main()

{

 char ch = 'A';

 char *p = &ch;

 char **q = &p;

 printf("%c\n", ch);

 printf("%p\n", p);

 printf("%p\n", q);

 printf("%c\n", *p);

 printf("%p\n", *q);

 printf("%c\n", **q);

}

A

530

1200

A

530

A

Output

0 1200 2500 1 MB 530
A 530 1200

ch p q

8

Casting
•  During an assignment x=y; the type of x has to be

compatible with the type of y
•  If this is not the case, the C-compiler will issue an error.
•  E.g. char* c;

 c = 1000;
will result in a compile time error, because the type of c
is char* and the type of 1000 is int.

•  When you know what you do, you can short-circuit type
checking.

•  This is called a cast.
•  E.g. char* c;

 c = (char*) 1000;
•  This tells the C-compiler to assume that the type of 1000

is char*

9

Using Pointers
void kernel_main()

{

 char* screen_base = (char *) 0xB8000;

 *screen_base = ‘A’;

}

We can use pointers to write to memory-mapped I/O devices. The program
above will write an ‘A’ to the top left corner of the screen. 0xB8000 is the
address of the top-left corner of the video screen. More on this later. Note
that this program will very likely not work under Unix or Windows because of
memory protection (I.e., you cannot just write to address 0xB8000).

10

Dynamic Data Structures
•  Dynamic data are used when the number of data items

are not known a priori
•  Program usually uses malloc()/free() in C and
new/delete in C++ to create sufficient number of data
items at runtime

•  As will be discussed later, in OS hacking we don’t have
those functions!!!

•  We have to solve the problem by doing a pseudo
dynamic memory management

•  Solution #1: do an array where each element has a
‘used’ flag. If a new element is needed, look for one
where used==FALSE

•  Solution #2: use a single-linked list (see next slides)

11

Part 1: Data Structures
•  Compiler allocates array

with 30 data items (this is
how we get around using
malloc())

•  I.e., there can be a
maximum of 30 data
items at any given time

•  Each data item contains a
pointer to the next
available data item

typedef struct _Node

{

 int x;

 struct _Node* next_free;

} Node;

Node l[30];

Node* first_free_node;

12

 Part 2: Initialization
•  Before the data structure

can be used, it needs to
be initialized once

•  Function init() creates
a single linked list of the
first 29 elements of the
list.

•  Global variable
first_free_node is
initialized to point to the
first array element

•  Only available (I.e., free)
elements are on the
linked list.

void init ()

{

 int i;

 /* Create single linked list

 of the first _29_ elements */

 for (i = 0; i < 29; i++)

 l[i].next_free = &l[i+1];

 /* 0 terminates the list at

 the last element */

 l[29].next_free = (Node *) 0;

 /* Initialize the pointer to the

 first free node */

 first_free_node = &l[0];

}

l[0] l[1] l[2] … l[29]

first_free_node

13

 Part 3: Allocating a Data Item
•  Function alloc_data_item()

returns a free data item from the
list of available data items

•  The next free data item is
determined via global variable
first_free_node

•  I.e., the next free element is
taken from the head of the
single linked list

•  If no more data items are
available, the function returns 0

•  The caller is responsible to
check that the value returned is
not 0

Node* alloc_data_item ()

{

 Node* tmp;

 tmp = first_free_node;

 first_free_node = tmp->next_free;

 return tmp;

}

14

 Part 4: Deleting a Data Item

•  A data item is deleted
by returning it to the
free list

•  This is done by
adding the data item
to be deleted to the
beginning of the
single linked list

void delete_data_item (Node* elem)

{

 elem->next_free = first_free_node;

 first_free_node = elem;

}

15

Example

l[0] l[1] l[2]

first_free_node

Initial setup: all elements are
on free list.

16

 Example

l[0] l[1] l[2]

first_free_node

item1

Step 1: request a data item.

17

 Example

l[0] l[1] l[2]

first_free_node

item2 item1

Step 2: request another data item.

18

Example

l[0] l[1] l[2]

first_free_node

item2

Step 3: release item1.

19

Example

l[0] l[1] l[2]

first_free_node

Step 4: release item2.

20

Pointers to Functions
void process_a (int x)

{

 printf (“Process a got %d\n”, x);

}

void process_b (int x)

{

 printf (“Process b got %d\n”, x);

}

void call (void (*func) (int), int arg)

{

 (*func) (arg);

}

void main()

{

 call (process_a, 10);

 call (process_b, 20);

}

Process a got 10

Process b got 20

Produces output:

… … … …

process_a process_a process_b 0 1 MB

Program code.
Data segment

21

Pointer to Functions
•  void call (void (*func)(int), int arg)
 - func and arg are formal parameters.
 - void (*func)(int) is the first argument

 - int arg is the second argument

•  The first argument to call expects a pointer to a function with return type void and

one input parameter of type integer.
•  The pointer to a function is actually the address of the first machine instruction that

belong to the implementation of the function.
•  call (process_a, 10) passes two actual parameters:

 - pointer (i.e. address) of function process_a (note: process_a is not
 called at this time)

 - 10
•  (*func)(arg) actually calls the function pointed to by func. The function to be

called is passed the actual parameter arg.

22

Pointers revisited

•  0xc3 is the Intel x86 machine instruction for RET (Return from
Subroutine)

•  Overwriting the first instruction of say_hello() with RET will cause
the function to exit immediately

•  This program will cause a security violation under Unix, but it would
work under TOS.

void say_hello()
{
 printf(“Hello!\n“);
}

void main()
{
 char *p = (char *) say_hello;
 say_hello();
 *p = 0xc3;
 say_hello();
}

Output:

Hello!

23

Assignment 1
•  Detailed explanation on course web site
•  Get TOS source code
•  Implement the functions located in tos/kernel/stdlib.c:

–  k_strlen()
–  k_memcpy()
–  k_memcmp()

•  Run test cases by calling make target
make host-tests

•  Not too much coding -- get familiar with TOS source code, review
pointers

•  Hint: the above functions should behave identical to the standard C-
library functions strlen(), memcpy(), and memcmp(). Use the
Unix man-pages to understand their behavior.

