
1

TOS Arno Puder

2

Emulation
•  TOS runs on regular PCs
•  To try a new version of TOS:

– Compile a new kernel
– Write the kernel to a floppy
– Reboot the PC

•  A couple of problems:
– Time consuming!
– We don’t all have spare PCs (or floppy drives)

•  The solution: use an emulated PC

3

Introducing Bochs
•  Bochs is an open source PC-Emulator

(bochs.sourceforge.net).
•  A PC emulator emulates a complete PC

on hardware level in software.
•  I.e., a PC emulator is a piece of software;

not hardware!
•  The Bochs window looks just like a PC

monitor (there is even a power button).

4

Running Bochs

 Bochs can be started by clicking on the Bochs shortcut and
then hitting the <Enter> key in the first window that pops up

5

Host and Guest Operating
System

Real Hardware (e.g., PC)

Host OS (e.g., Windows)

Excel WinWord Bochs

Guest OS
(e.g., FreeDOS)

Software

Hardware

6

Virtual Hardware
•  How does Bochs emulate hardware of the guest OS?
•  The ‘virtual’ Hardware is mapped to resources on the

Host OS.
•  E.g. the floppy drive A: of the guest OS is mapped to a

regular file located in the filesystem of the host OS.
•  This mapping between virtual and real resources is done

with the configuration file ~/.bochsrc which contains
the line:
 floppya: 1_44 =image/disk_image

•  This means that the drive A: of the guest OS is mapped
to a 1.44 MB file located in image/disk_image

•  Whenever the guest OS accesses A:, the operation is
redirected by Bochs to this file.

7

CSC 415 Arno Puder

8

Overview of MS-DOS

•  MS-DOS: Microsoft Disk Operating System
•  Old operating system implemented by Microsoft

for the PC
•  Windows is the successor of DOS
•  DOS is still “hidden” in windows through the

command shell
•  MS-DOS – written to provide the most

functionality in the least space
–  not divided into modules
–  Although MS-DOS has some structure, its interfaces

and levels of functionality are not well separated

9

MS-DOS Execution

At System Start-up" Running a Program"

10

DOS Filenames
•  Filename have a name and an extension
•  The name can be at most 8 characters long
•  The extension can be at most 3 characters long
•  Name and extension are separated by a dot,

e.g., command.com, autoexec.bat
•  The extension indicates the type of the file:

–  .com: command file
–  .exe: executable
–  .bat: batch file; contains a series of DOS commands

11

DOS Commands
Command Description
copy <from> <to> Copies file <from> to file <to>
echo <message> Print <message> to the console
type <file> Prints the contents of <file> to the console
edit <file> Edits the content of <file>
ren <old> <new> Renames <old> to <new>
del <file> Deletes <file>
md <dir> Makes a new directory called <dir>
dir Show all the files contained in the current directory
rmdir <dir> Removes the directory named <dir>
cd <dir> Changes the current directory to <dir>

12

Examples
•  dir *.bat

Show all files of the current directory that end
in .bat

•  copy autoexec.bat a.old
Copy the contents of autoexec.bat to a.old

•  type autoexec.bat
Display the contents of autoexec.bat

•  md test
Create a directory test

13

Screenshot of DOS

14

FreeDOS

•  FreeDOS is an Open Source
implementation of MS-DOS

•  It contains a complete MS-DOS
environment

•  Available at http://www.freedos.org
•  We will use FreeDOS to understand the

functionality of a PC Emulator

15

Conventions

Explains the TOS API.

Assignments. For each assignment you
will have to submit a project journal entry.

PacMan. A (hopefully) fun project that will
be enhanced step-by-step throughout the
semester where you will be using your
own TOS API.

16

Assignment 0
•  Install Bochs (will be automatically installed as

part of the TOS installation)
•  Get the FreeDOS disk image from the course

web page.
•  Run Bochs.
•  Run some DOS commands. For example:

 type autoexec.bat
 dir

•  You will be using Bochs extensively -- make sure
you are comfortable using it!

17

TOS Arno Puder

18

Overview of TOS

•  TOS = Train Operating System
(Train == Training || Model Train)

•  An educational operating system running
on a PC

•  Written in C (99%) and x86 assembly (1%)
•  All the files and Makefiles are provided for

you
•  You just need to implement the core

functions.

19

Running TOS in Bochs

Real Hardware (e.g., PC)

Host OS (e.g., Windows)

Emacs Firefox Bochs

TOS

Software

Hardware

20

Compilation Process

Compiler

Source File (e.g., foo.c)

Assembly code (e.g., foo.s)

Assembler

Object file (e.g., foo.o)

21

Compilation Process

Linker

main.o

Executable file

foo.o bar.o

•  Compiler/assembler/linker usually invoked automatically
 gcc -v … -- shows the actual commands
 gcc -S foo.c -- run the compiler but not the assembler

22

Directory structure of TOS
tos

fat FAT-tools (fatformat, fatdir, fatcopy, fatdel, rawwrite.exe)

include Header file for TOS

test

boot TOS boot loader

kernel The main sources of TOS

train Train simulation

image

tools

Test programs

Contains the floppy image from which to
boot

23

Files in ~/tos/kernel
Files Contents

assert.c Assert-function. Does not need to be edited.

com.c COMs interface.

dispatch.c Dispatcher and scheduler.

intr.c Interrupt handling.

main.c Contains main entry point kernel_main()

null.c Null process.

train.c Train application.

demo.c Empty. Does not need to be edited.

inout.c Low level input/output routines for COM1.

ipc.c Inter-process communications.

mem.c Memory access functions.

pacman.c PacMan implementation.

process.c Process management.

timer.c Timer interrupt handling.

keyb.c Keyboard interface. Does not need to be edited.

shell.c Mini-shell for typing in commands. Can be extended for own commands.

window.c Mini-windowing system for text-mode.

24

Recompiling TOS
•  The only files you will be editing are tos/
kernel/*.c

•  Use your preferred editor to make the
changes

•  Two ways to compile TOS, both from the
main tos directory:
– make tests (build a testing kernel)
– make (build a regular kernel)

•  For now, always build a test kernel -- we’ll
build “regular” kernels later

25

Recompiling TOS
•  No need to write or edit Makefiles
•  If the build is successful, the new boot

image will be located in tos/image/
disk_image

•  Other useful make targets:
– make clean removes all object files and

executables
– make clean-kernel removes just kernel-

specific object files

26

Writing a floppy
•  The file tos/image/disk_image represents the complete 1.44

MB contents of a floppy.
•  This file can be transferred to a (real) floppy disk

–  under Linux/MacOS:
dd if =tos/image/disk_image of=/dev/fd0

–  under Windows: use the tool tos/tools/fat/rawrite.exe to copy
the image. E.g. rawrite.exe disk.img

–  Note that rawrite.exe can only handle 8.3 style file names (e.g.:
rawrite.exe disk_image will not work)

•  You can boot from this floppy on a real PC.
•  What you should see on the real PC is exactly the same

thing you will see under Bochs.
•  As you implement your own OS, it is a good idea to try it

on a real PC using the technique explained on this slide.

27

FAT-Tools
•  TOS provides tools for manipulating disk images.
•  They are called FAT tools because of the name of the

DOS filesystem (File Allocation Table)
•  Tools (in tos/tools/fat)

–  fatdir: displays the content of a directory
–  fatformat: formats the disk image
–  fatcopy: copies files to and from the disk image
–  fatdel: deletes a file on the disk image

•  Example:
–  tos/tools/fat/fatdir tos/image/disk_image /

•  You will not use FAT tools yourself. They are
automatically invoked by the TOS Makefile

28

Some Guidelines
•  Only modify C-files in tos/kernel
•  No need to change Makefiles or C-header

files.
•  You can (and are encouraged to) look at

and understand other files.
•  You can not use any C-library functions:

no malloc(), no free()!! (remember,
we don’t have an OS yet)

29

Running TOS (Assignment 2+)

Real Hardware (e.g., PC)

Host OS (e.g., Windows)

Emacs Firefox Bochs

TOS

Software

Hardware

30

Running TOS
•  Do the following to run TOS:

– Start the Bochs emulator
– Press <enter> after the menu appears

•  The emulation will now start
•  Click the Bochs “Power” button to exit
•  Click the Bochs “Reset” button to restart

31

Running TOS
(Assignment 1)

Real Hardware (e.g., PC)

Host OS (e.g., Windows)

Emacs Firefox TOS Software

Hardware

32

TOS Boot Sequence
•  Sequence of events during boot:

–  PC is turned on (i.e. Bochs is
executed)

–  PC loads the boot sector (the first
sector of the floppy disk)

–  The boot-loader loads TOS at address
4000, initializes %ESP just below 640
kB and then jumps to
kernel_main()

•  The entry point of TOS is function
void kernel_main() in file tos/
kernel/main.c or tos/test/
run_tests.c

tos.img

Video Display Area

1 MB

0

640 kb %ESP

4000

